
SYNTHESIS OF THREE-DIMENSIONAL VIRTUAL
WORLDS FROM MONOCULAR IMAGES OF

URBAN ROAD TRAFFIC SCENES

Ankita Christine Victor

Master of Technology Thesis
June 2019

International Institute of Information Technology, Bangalore

SYNTHESIS OF THREE-DIMENSIONAL VIRTUAL

WORLDS FROM MONOCULAR IMAGES OF

URBAN ROAD TRAFFIC SCENES

Submitted to International Institute of Information Technology,
Bangalore

in Partial Fulfillment of
the Requirements for the Award of

Master of Technology

by

Ankita Christine Victor
IMT2014005

International Institute of Information Technology, Bangalore
June 2019

Dedicated to

mom and dad.

Thesis Certificate

This is to certify that the thesis titled SYNTHESIS OF THREE-DIMENSIONAL

VIRTUAL WORLDS FROM MONOCULAR IMAGES OF URBAN ROAD TRAF-

FIC SCENES submitted to the International Institute of Information Technology, Ban-

galore, for the award of the degree of Master of Technology is a bona fide record of

the research work done by Ankita Christine Victor, IMT2014005, under my supervi-

sion. The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Professor Jaya Sreevalsan Nair

Bangalore,

The 3rd of June, 2019.

iv

SYNTHESIS OF THREE-DIMENSIONAL VIRTUAL WORLDS FROM

MONOCULAR IMAGES OF URBAN ROAD TRAFFIC SCENES

Abstract

Three-dimensional (3D) modeling of urban scenes has warranted well deserved in-

terest in entertainment, navigation, urban planning and simulation. These fields require

realistic looking, water-tight models. While automated processes for 3D reconstruction

exist, the output of these that are typically either sparse point clouds or blobby models,

which lack the detail and finesse required. Modeling realistic scenes is still predomi-

nantly a manual process, relying largely on 3D artists.

In this thesis, our motivation is to generate 3D constructions of urban road traffic

scenes from monocular images. Cameras mounted on vehicles are capable of providing

sequences of images of the road scene, which are datasets of our interest. The chal-

lenges in generating 3D models from monocular images stem from the incompleteness

of the information of the 3D space from the image, which is a two-dimensional (2D)

projection of the scene in the projection plane of the camera. Our approach in utilizing

the available pixel information from an image to synthesize the 3D scene is to arrive at a

workflow/pipeline which combines solutions from machine learning, computer vision,

and computer graphics. Given a monocular image, our proposed pipeline uses deep

learning to generate a dense depth map, an inverse projection to correct for perspective

distortion in the image, comparisons of positions to correct errors in depth and a ren-

dering engine to load and display 3D models belonging to a particular type at the right

position in world space. Thus, our proposed pipeline largely eliminates the need for

human-in-the-loop for 3D modeling of scenes. Our proposed method, if integrated into

v

a modeling software, could be used to significantly speed up the process of modeling

virtual environments,

vi

Acknowledgements

I would like to express my sincere appreciation and gratitude to my advisor, Professor

Jaya Nair. Her encouragement and guidance has been invaluable to me over the last

two years and has helped me become a passionate researcher. Her energy and creativ-

ity in identifying unexplored problems and devising solutions is a constant source of

inspiration to me. This thesis would not be possible without her mentorship.

I thank both Professor Jaya Nair and Professor T K Srikanth for starting me on

this journey into the world of computer graphics and being on my thesis examination

committee, and Professor Dinesh Babu Jayagopi for being on my thesis examination

committee and for his insight into machine learning. I thank all the professors I’ve

learned under at IIITB. They have all made me grow as a student and a researcher.

I also thank the Machine Intelligence and Robotics Center (MINRO) for funding my

thesis.

I thank my brother Ashish, my colleagues Tarun Dutt and Nihal Kudligi for being

my sounding boards and allowing to me articulate my thoughts, and ideas, and my

friends who have been there with me through these five years of college.

Finally, I wish to thank my parents. For all the lessons you took me to, the uncon-

ditional love, faith and support, for being my rocks in this world. You nurtured my

creativity and helped me become the person I am today. Thank you for everything.

vii

Contents

Abstract iv

Acknowledgements vi

List of Figures x

List of Tables xiii

List of Abbreviations xiv

1 INTRODUCTION 2

1.1 Our Contributions . 6

2 BACKGROUND 9

2.1 3D Modeling and Sketchpad . 10

2.2 3D Scanning . 12

2.3 Reconstruction From Images . 13

viii

3 DEPTH ESTIMATION OF MONOCULAR IMAGES 20

3.1 Method . 22

3.1.1 Depth Estimation as Image Reconstruction 22

3.1.2 Neural Network . 23

3.1.3 Loss Function . 25

3.2 Our Use and Results . 28

3.3 Discussion . 29

4 PERSPECTIVE CORRECTION 33

4.1 Perspective Projection Geometry . 33

4.1.1 Pinhole Camera . 35

4.2 Perspective Correction . 38

4.2.1 Direct Linear Transform . 41

4.3 Discussion . 47

4.3.1 Monte Carlo Optimization . 47

4.3.2 Choice of Points for DLT . 48

5 3D Synthesis Pipeline 49

5.1 Pipeline Description . 50

5.1.1 Dataset and Model . 50

5.1.2 Depth Estimation . 53

ix

5.1.3 Perspective Inversion . 55

5.1.4 Model Loading . 55

5.2 Results . 57

5.3 Discussion . 57

6 CONCLUSIONS AND FUTURE WORK 60

6.1 Future Work . 61

6.2 Summary . 64

Bibliography 65

x

List of Figures

FC1.1 ¿ Google Maps 5.0 with extruded details. 3

FC1.2 A scene of urban road traffic set in Detroit from Ubisoft’s game The

Crew. Image credit: Detroit Metro Times 4

FC1.3 Schematic of our proposed workflow. From the input image, depth

is estimated for every pixel and aggregated over objects, and object

positions in world space are obtained by perspective correction. A

prefabricated 3D model of matching class is then loaded into the scene

at the computed position. 7

FC1.4 Sample input and corresponding output obtained via our workflow. . . 8

FC2.1 Ivan Sutherland using Sketchpad on an MIT Lincoln Labs TX-2 com-

puter [36]. 11

FC2.2 Result from more than one camera aided by GPS/INS data by Polle-

feys et al. [26] . 14

FC2.3 Point cloud reconstruction of Rome using the incremental SfM tech-

nique by Agarwal et al. [2] . 15

xi

FC2.4 Result of 3D reconstruction from monocular image sequence by Kundu

et al. [22]. The final reconstruction is denser than traditional SfM

methods. 17

FC2.5 Result of 3D reconstruction using class-specific geometric priors by

Hane et al. [18] . 17

FC2.6 Result of semantic labeling 3D reconstruction by Sengupta et al. [29]. 18

FC3.1 Stereo image capture. 23

FC3.2 Stereo Left-Right consistency. 25

FC3.3 Disparity map of arbitrary images outside of the training datasets. . . 30

FC3.4 Images from the Cityscapes dataset, the output disparity map, and

corresponding depth map. 31

FC4.1 Pinhole camera projection. 35

FC4.2 Projection seen from Y axis. 37

FC4.3 Vanishing point as a result of perspective projection. 38

FC4.4 An image from Cityscapes and its segmented image. 39

FC4.5 Imagined bird’s eye view of the road scene in Fig. FC4.4. 39

FC4.6 A way to ‘guesstimate’ xi. 41

FC4.7 Transformations involved in projection. 42

FC4.8 Sample choice of points. 48

FC5.1 3D synthesis pipeline. 50

xii

FC5.2 Number of finely annotated pixels per class and their associated cate-

gories taken [9]. 51

FC5.3 Depth values along the lines Y = y in image space and on the ground

plane can be assumed to have the same depth. Each coloured line

represents a different value, and all points on the line have the same

depth. Note that no line is drawn through objects since these are not

on the ground. In terms of Y , a > b > c > d and in terms of corre-

sponding depth, a < b < c < d. 54

FC5.4 Point selection by the user. A point on the image is double clicked

and the ‘guesstimated’ X coordinate is entered by the user. The corre-

sponding Z coordinate is picked up from the depth map. Once points

are selected DLT is used to obtain the transformation matrix by com-

puting the SVD on the linear homogeneous system of points. By in-

creasing the number of known point correspondences, the accuracy in

the mapping decreases. 56

FC5.5 2D input image and corresponding 3D construction using our pro-

posed pipeline. 58

FC6.1 Model selection by Sankar [28] . 62

FC6.2 A more detailed scene of an urban road. Image credit: Shutterstock . . 63

FC6.3 3D digital model of Manchester. Image credit: VU.CITY. 64

xiii

List of Tables

TC3.1 Comparison of results on KITTI [15] using the split of Eigen et al.

[12], the predictions of Liu et al. [24] generated on a mix of the left

and right images instead of just the left input images., the results of

Garg et al. [14] and Godard et al. [17]. 31

TC5.1 List of classes and their corresponding categories used to semantically

segment images in Cityscapes. 52

xiv

List of Abbreviations

3D Three Dimensional

2D Two Dimensional

SfM Structure from Motion

AR Augmented Reality

VR Virtual Reality

CRF Conditional Random Field

CAD Computer Aided Design

GPS Global Positioning System

INS Inertial Navigation System

NURBS Non-uniform Rational Basis Spline

GUI Graphical User Interface

SSIM Single Scale Structural Similarity

DLT Direct Linear Transform

SVD Singular Value Decomposition

HDR High Dynamic Range

“All problems in Computer Graphics can be solved with a matrix inversion.”

Jim Blinn

2

CHAPTER 1

INTRODUCTION

Constructing a three dimensional (3D) model of a scene from a two dimensional

(2D) image is a fundamental problem in computer vision and graphics. The technology

has applications in entertainment, digital mapping, urban planning and training simula-

tions for autonomous vehicle software. In the entertainment industry, many animation

features and video games are set in 3D worlds either inspired by or directly modeled on

real cities. Digital mapping applications such as Google Maps have entered the third

dimension and allow users to explore around extruded cities, as shown in Figure FC1.1.

Urban planning looks to 3D reconstruction of the urban environment to form a basis

for surveying and future development. Simulation of autonomous vehicle software uses

3D scenes to generate realistic, urban environments for testing. Simply put, there is a

demand for high-quality 3D content.

Attempts to automate the process of 3D construction use a combination of sensors

and modalities. The data capture process for accurate 3D reconstruction requires an

elaborate and expensive set up with multiple cameras and/or sensors. High precision

3D scanners are capable of generating accurate 3D models of single objects, but the

technology to scan entire environments is still limited to noisy methods like Light De-

tection and Ranging (LiDAR). With the onslaught of digital camera devices and the

Internet, the Web has become a source of billions of images. Using camera images as

Figure FC1.1: ¿ Google Maps 5.0 with extruded details.

the starting point for modeling makes data capture process less complex. Additionally,

machine learning and computer vision provide the technology to augment these 2D,

RGB images with 3D information and create new uses for monocular images.

Despite interest in the study of the urban environment, in the past urban geography

has been regarded as less topical in comparison to the other more established fields [30].

This can be explained partly by the nature of the urban environment that comprises a

number of distinct elements from landscapes to transportation networks and various

other socio-economic scenes [30]. However, as autonomous vehicles and robots are

gaining momentum, augmented reality (AR) and virtual reality (VR) are becoming

ubiquitous, and high-quality 3D content is supported by commercial mobile phones

there is increased interest in the construction of urban geography for various purposes.

One example relevant to this thesis is autonomous vehicle simulation. Researchers at

the RAND Corporation has estimated that self-driving vehicles may have to drive up

to 17.7 billion kilometers (km) before one can have reliable statistics on their safety to

compare to human drivers [20]. While one could record 17.7 billion km of footage,

modeling virtual worlds that can be manipulated at will to produce a variety of scenar-

ios is more advantageous.

Figure FC1.2: A scene of urban road traffic set in Detroit from Ubisoft’s game The Crew. Image
credit: Detroit Metro Times

So far, no method has been able to perfectly reconstruct large urban scenes from

captured data. As a result, scene modeling still remains a manual process relying on

3D artists. Most 3D artists typically follow the same workflow that usually starts with

gathering inspiration and ideas from the Internet. Although it is not always necessary to

use a reference image during modeling, it makes the process much easier. In addition,

many video games, animation features, and simulation sequences are set in the real

world, which makes reference to such images time saving and useful.

Once an idea of the intended environment is established, artists typically make a

general concept of the scene they want to create as a simple sketch or directly in 3D

software by setting up a camera and placing the basic objects like cuboids at the right

positions. One of the important factors in setting up a realistic scene is scale. It is

important to keep objects to scale even if the scene is just a mock-up of simple geometric

objects. Once the location and the scale of every object in the scene are fixed the artist

goes about replacing the basic objects with ‘real’ objects. The reference image comes

in use at this point. Cuboids and other simple objects and replaced with 3D models of

buildings, cars and other objects.

After the basic environment is modeled, the scene is lit with a main light and then

detailed by adding smaller environment elements such as street lamps, bins, pavement

tiles, and street signs. More lights are added into the scene, objects are textured, and

given material properties. It is easier to tweak materials to look good with lights rather

the other way around. The scene is then rendered and post-processed in editing soft-

ware. An example of one such modeled, 3D scene is shown Figure FC1.2. The scene is

taken from a racing video game called that features realistic racing environments based

on real American cities.

3D modeling of realistic environments is offered as a service. Two important aspects

of the creation process is how close in appearance an artist can make the virtual environ-

ment look when compared to the real world, and how fast these scenes can be modeled.

Sophisticated modeling tools like Blender, Maya, Cinema4D and 3ds Max are industry

standard software packages used for 3D printing, animation, gaming, architecture, and

industrial design. However, these tools assist in realizing an artist’s creative ideas rather

than the creation process itself. To this regard, a technology that is capable of delivering

a usable, realistic 3D environment with minimal human input is an interesting focus of

research that we believe has potential.

To put it concisely, there is demand for production ready 3D content that can be

used as is in video games and other environments and much of this 3D content is based

off images of real world scenes. We then pose the following research question: Is it

possible to design a system for automated modeling of a scene depicted in a monocular

image input, with the goal of improving modeling efficiency?

To address this question we propose a workflow that uses convolutional neural net-

works to estimate depth, semantic labels, and projection matrix calibration to synthesize

a scene based on a monocular image. Our proposed workflow automates the initial steps

of 3D scene modeling described above up to the stage where the primary objects on the

scene have been placed and the scene is lit with the main light. There are several chal-

lenges to overcome in order to realize such a system including noisy depth estimation

and recovering the world space positions of objects in the image.

1.1 Our Contributions

To address our research question, we have identified three main modules of a work-

flow, namely, depth estimation, perspective correction, and model loading, as shown in

Figure FC1.3. Our workflow exclusively synthesizes 3D virtual worlds of urban road

traffic scenes with paved roads, parked/stationary and moving traffic, people, surround-

ing trees, and construction.

While depth estimation as an area of research is used mostly with autonomous nav-

igation or point cloud reconstruction in mind, we propose using a depth estimation

technique given by Godard et al [17] to recover depth from a monocular image. While

it is almost intuitive for a human to infer the depth of various objects in a monocular

image and construct a scene using the image as a reference, it is much harder for a

computer to do so. The depth estimation technique used here is trained on stereo data,

runs on monocular images, and produces high quality, dense depth maps. We have cho-

sen this technique as it does not train on ground truth depth information and is capable

of generalization to a certain extent. Moreover, the model can be retrained on easily

acquirable stereo images allowing the workflow to be used on a wider class of scenes.

Images captured by a camera are projected perspectively. This means that parallel

lines in the world space are no longer parallel in the image space. This affects the ability

of a computer system from identifying the orthographic positions of objects in a scene.

To recover the X-coordinate of these objects we modify a camera calibration method,

Direct Linear Transform (DLT), to compute a mapping between ‘known’ 2D and 3D

points assuming that all objects of interest are on the ground plane.

At the time of scene construction, ground truth semantic labels, and segment bound-

Figure FC1.3: Schematic of our proposed workflow. From the input image, depth is estimated
for every pixel and aggregated over objects, and object positions in world space are obtained
by perspective correction. A prefabricated 3D model of matching class is then loaded into the
scene at the computed position.

aries are passed to a module of our workflow which computes the average depth for each

object and its position before projection. A 3D model belonging to the same semantic

class is placed in the scene at the computed position. Our prototype application only

‘type matches‘ objects in images to the 3D models that are finally loaded. There are

no exact matches here, for example, if a woman is walking, we still approximate with

a 3D model of a man, suggesting a match of human being in the scene. Similarly a

generic sedan mesh model for any car in the scene. A sample outcome can be seen

in Figure FC1.4. Our proposed workflow constructs an approximate 3D virtual worlds

from a monocular image and we have not found any prior work on such workflows.

The rest of the thesis is structured as follows: Chapter 2 provides an overview of 3D

Figure FC1.4: Sample input and corresponding output obtained via our workflow.

modeling and reconstruction. Chapter 3 describes the depth estimation for monocular

images proposed by Godard et al. [17]. Chapter 4 describes our inverse projection

method. Chapter 5 describes our 3D synthesis pipeline and results on monocular images

from the Cityscapes dataset. Chapter 6 presents our conclusions and discusses several

directions for future work.

9

CHAPTER 2

BACKGROUND

3D models represent a physical object using a set of geometric primitives, which are

usually points in 3D space that are connected to form triangles, quads, lines, or curves.

3D models can be created by hand, algorithmically (e.g. procedural modeling), scanned,

or via photogrammetry. Specialized software is used by 3D artists to model objects. 3D

scanners generally output point clouds, which measure a large number of points on the

scanned object(s). While point clouds can be directly rendered and visualized using

methods such as QSplat [27], these are often converted to mesh models or non-uniform

rational basis spline (NURBS) patches through a process of surface reconstruction.

3D reconstruction from images and photogrammetry has been a popular area of

research primarily in computer vision and visualization. Inferring the geometry of 3D

scenes from 2D images is a challenging task because the image formation process is not

generally invertible: from its projected position in a camera image plane, a scene point

can only be recovered up to a one-parameter ambiguity corresponding to its distance

from the camera. Much research effort has been devoted to the modeling of man-made

environments using a combination of sensors and other visual modalities. One natural

choice to satisfy the requirement of geometric modeling is the combined use of active

range scanners such as LiDAR and digital cameras [3]. The captured data, which can

be an image sequence, multiple viewpoints of the same scene with elevation data such

as LiDAR, is then used to solve the reconstruction problem for 3D visualization. The

common goal in most cases is the accurate reconstruction of a scene to obtain models

that will be useful for visualization, navigation, and other quantitative or qualitative

analysis. Although we look at scene construction (creating an approximate scene with

the same types of objects at the right position) rather than reconstruction, solutions to

the latter have some overlap with the former in that they rely on depth inference and

camera pose estimation. In our work, we have examined the former, and the latter is

listed as future work.

2.1 3D Modeling and Sketchpad

3D modeling is simply defined as the process of creating a 3D, digital representation

of an actual object or scene. In 1963, Ivan Sutherland wrote a revolutionary program

called Sketchpad [32], for which he received the Turing Award in 1988. Sketchpad is

considered to be the forefather of modern computer aided design (CAD) and 3D mod-

elers. A Sketchpad user could sketch directly on a screen with a ‘light pen’. Sketchpad

was an interactive system. Using the light pen and the input buttons on it, a user could

draw directly on the screen. The program supported the drawing of points, line seg-

ments, and arcs as basic elements, as well as allowed these to be saved as master sym-

bols, which could be copied or instanced. This facility was used to create compound

geometry.

Sketchpad supported explicit constraints, which are added to entities after they were

drawn, as well as implicit constraints, which are created while entities were being

drawn. For example, snapping, a feature that is still used in 3D modeling and illus-

trating software, originated from the Sketchpad. If a user, while drawing a line, brought

the cursor close to the endpoint of another line, it would snap to the line being drawn

Figure FC2.1: Ivan Sutherland using Sketchpad on an MIT Lincoln Labs TX-2 computer [36].

to that endpoint and would remember that the two are connected during editing and

moving. Sketchpad included seventeen different types of constraints, including verti-

cal, horizontal, perpendicular, coincident, parallel, aligned, equal size, and more. These

constraints could be combined to create more complex relationships between geometric

entities. An image of Sutherland using Sketchpad is seen in Figure FC2.1.

Soon after Sutherland, Timothy E Johnson submitted his Master’s thesis describ-

ing Sketchpad III, a 3D version of Sketchpad. At about the same time, Lawrence G.

Roberts submitted his Ph.D. thesis, in which he had added support to Sketchpad for 3D

solids, including assemblies and real-time hidden line removal. Sutherland, Johnson,

and Roberts each made 16 mm movies, to demonstrate their work [36].

Sketchpad is important to be mentioned in the context of 3D modeling as it gave

users the ability to create the first digital models ever. Additionally, it pioneered the

concept of a graphical user interface (GUI). The sketching modules for future programs

like SolidWorks were very much like Sketchpad. Today, the majority of 3D modeling

for video games and movies is done using specialized software whose origins trace back

to Sketchpad.

2.2 3D Scanning

3D scanning is one of the most popularly used methods for acquiring 3D models.

The output of a 3D scanner is a point cloud of geometric samples on the surface of the

subject which can then be used to obtain the shape of the subject via some reconstruc-

tion method. 3D scanners, like cameras, have a field of view and can collect information

about non occluded surfaces. Similar to how a camera collects color information about

non-occluded surfaces within its field of view, a 3D scanner collects distance informa-

tion, and color if needed. This allows the three dimensional position of each captured

point to be identified.

For most scenarios, a single scan will not produce a complete model of the subject.

Multiple scans from different viewpoints and directions are required to obtain infor-

mation about all sides of the subject and construct a 360◦ model of the same. These

scans are brought into a common frame of reference by a process called alignment or

registration and are then merged to create a complete 3D scan of the subject. This entire

process, going from scans to an aligned 3D representation, is known as the 3D scanning

pipeline [5].

There are a variety of technologies for digitally acquiring the shape of a 3D ob-

ject. Curless [10] divided them into two types: contact and non-contact. Non-contact

solutions can be further divided into two main categories, namely, active and passive.

Contact scanners examine the subject through physical touch, while the object is in con-

tact with or resting on a stable, flat surface plate and is polished to a specific maximum

of surface roughness. Contact scanners are typically used for digitizing clay models

in the animation industry. Non-contact active scanners emit radiation or light and de-

tect its reflection or radiation passing through an object in order to scan the object or

environment.

2.3 Reconstruction From Images

Non-contact passive 3D construction solutions do not emit any radiation but instead

rely on detecting reflected ambient radiation — typically visible light. In most cases,

passive hardware is a simple digital camera. Stereoscopic systems employ two cameras,

slightly apart, looking at the same scene. By analyzing the slight differences between

corresponding pixels in each camera image that is the disparity, it is possible to deter-

mine the distance at each point in the images. Photometric systems use a single camera,

and take multiple images under varying lighting conditions to recover the surface ori-

entation at each pixel. Other methods take multiple single camera shots of the same

object from multiple views to create a reconstruction.

Structure From Motion

Structure from Motion (SfM) is based on the idea that given a scene depicted using

two or more 2D views, a 3D point can be reconstructed by triangulation. SfM allows

projection matrices and 3D points to be computed simultaneously using only corre-

sponding points in each view. Given n projected points in m images, Ui j j, where i ∈

1...m, j ∈ 1...n represents the nth point in the mth image, the goal is to find both pro-

jection matrices P1...Pm and a consistent structure in 3D coordinates X1...Xn that relates

Ui j. The early self-calibrating metric reconstruction systems [4, 11, 25] served as some

of the first systems on 3D reconstruction from unordered Internet photo collections [31],

and urban scenes [26].

Pollefeys et al. [26] introduced a large-scale, 3D reconstruction system to deliver

models in the form of textured polygonal meshes. Their system incorporates data from

a Global Positioning System (GPS) and an Inertial Navigation System (INS), if avail-

able, and uses SfM otherwise. Their core algorithm operates on frames from the video

of a monocular camera as it moves in space. Salient image features are tracked across

frames to provide 2D tracks that potentially belong to a 3D point following which they

use 3D tracking/geo-location or SfM to estimate the camera pose. The feature points

are examined using sparse scene analysis to determine three orthogonal sweeping di-

rections (one for the ground and two for the facades). Stereo depth estimation computes

depth maps from the obtained camera poses using a multi-view plane sweeping stereo

algorithm. Lastly model generation creates a triangular mesh for each fused depth map

and determines the texture mapping. It also removes duplicate representations of the

same surface and fills some of the holes. The results of their work are seen in Figure

FC2.2

Figure FC2.2: Result from more than one camera aided by GPS/INS data by Pollefeys et al. [26]

Incremental SfM is a popular strategy for 3D reconstruction from unordered image

collections. In a typical incremental SfM system, two view reconstructions are first es-

timated upon successful feature matching between two images and 3D models are then

reconstructed by initializing from good two-view reconstructions, repeatedly adding

matched images, triangulating feature matches, and bundle-adjusting the structure and

motion [35]. Incremental SfM is a popular strategy from reconstructing geometry from

large-scale community photo collections. There exist approaches which source images

from the Internet, match the images to a specific scene and use SfM to generate sparse

3D models [2,13,31]. These follow the similar process of choosing two images to seed

the reconstruction, then adding cameras using pose estimation, finding 3D points via

triangulation followed by a non-linear refinement and different views are incrementally

added. A reconstruction of Rome from an unstructured image collection on the Web by

Agarwal et al. [2] is shown in Figure FC2.3

Figure FC2.3: Point cloud reconstruction of Rome using the incremental SfM technique by
Agarwal et al. [2]

The approach proposed by Cohen et al. [8] optimizes SfM reconstruction by dis-

covering symmetries and repetitions in the scene structure from multiple images and

imposes these symmetry constraints to improve the accuracy of SfM algorithms.

It must be noted that given an appropriate number of views, SfM can reconstruct

a sparse 3D view of any given scene. This differs from the goal of this thesis whose

target scene is very specific to urban traffic and the goal of which is to mimic rather than

reconstruct in exact detail. Although the work by Pollefeys et al. [26] seems closest in

spirit to our work, it uses multiple views and a video sequence as well as GPS/INS data.

Moreover owing to the ‘holes’ in the 3D reconstruction, the final modeled scene can

be used more as a reference and not as a virtual environment in VR, games or other

simulations.

Joint Semantic Segmentation and 3D Reconstruction

Joint semantic segmentation and 3D reconstruction approaches look at how image

segmentation and dense 3D reconstruction can contribute to each other’s task by con-

straining the solution using priors to yield smoother 3D reconstructions and/or segmen-

tation. Lempitsky and Boykov [23] utilize the surface area as regularization prior and

obtain the final surface representation indirectly via volumetric optimization. However,

this returns only a binary decision on the occupancy state of a voxel, that is occupied or

free, and does not take into account class-specific geometry. This leads to the motivation

behind joint semantic segmentation and 3D reconstruction.

Kundu et al. [22] used an approach for joint inference of 3D scene structure and se-

mantic labeling for forward moving monocular image sequences. Starting with monoc-

ular image stream, their framework produces a 3D volumetric semantic and occupancy

map, which they claim is more useful than a series of 2D semantic label images or a

sparse point cloud produced by traditional semantic segmentation and SfM pipelines

respectively.

Kundu et al. derive a Conditional Random Field (CRF) model defined in the 3D

space, that jointly infers the semantic category and occupancy for each voxel. This

joint inference in the 3D CRF allows for more informed priors and constraints, which

they have stated is otherwise not possible if solved separately using their traditional

frameworks. Class specific semantic cues constrain the 3D structure in areas, where

multi-view constraints are weak. Their reconstruction results are as shown in Figure

FC2.4.

Hane et al. [18] used a multi-label volumetric segmentation framework that assigns

some object class or a free-space label to voxels. The semantic labeling of each voxel

influences the associated appearance of that voxel in 3D space, and hence, can influence

a spatial smoothness prior to generating an accurate 3D reconstruction. Their approach

is influenced by the notion that a class-specific regularizer guided by image appearances

Figure FC2.4: Result of 3D reconstruction from monocular image sequence by Kundu et al.
[22]. The final reconstruction is denser than traditional SfM methods.

can adaptively enforce spatial smoothness and preferred orientations of 3D surfaces, see

Figure FC2.5.

Hane et al. proposed to learn appearance likelihoods and class-specific geometry

priors for surface orientations from training data in an initial step. These data-driven

priors are then used to define unary and pairwise potentials in a volumetric segmenta-

tion framework, complementary to the measured evidence acquired from depth maps.

While optimizing over the label assignment in this volume, the image-based appear-

ance likelihoods, depth maps computed using plane sweep stereo matching for each of

the images, and geometric priors interact with each other yielding an improved dense

reconstruction and labeling.

Figure FC2.5: Result of 3D reconstruction using class-specific geometric priors by Hane et
al. [18]

Sengupta et al. [29] proposed an algorithm that generates an efficient and accurate

dense 3D reconstruction with associated semantic labeling. The inputs to the algorithm

are street level stereo image pairs acquired from a camera mounted on a moving vehicle.

The depth-maps that are generated from the moving stereo pairs are fused into a global

3D volume. The street-level images are automatically labeled using a CRF framework

that exploits the stereo images, and label estimates are aggregated to annotate the 3D

volume, see Figure FC2.6. Semantic segmentation and reconstruction are not performed

jointly.

Figure FC2.6: Result of semantic labeling 3D reconstruction by Sengupta et al. [29].

The motivation behind most 3D reconstruction techniques described here so far

deals more with gathering 3D information of the scene or building a navigable envi-

ronment of a scene for autonomous machines and less to do with the actual scene or

landscape modeling. An approximate 3D reconstruction whether dense or sparse is

sufficient given that the goal is to aid general understanding of the scene by a system.

Moreover, none of the described works here considers a single monocular image as

input. The input is either multi-view, stereo, or an image sequence with one or more

cameras and the output is either a sparse or dense reconstruction of the scene with the

additional goal of semantic voxel labeling.

This thesis differs in that it considers a single, monocular image and semantic labels

as input, gets as output a complete 3D scene with ‘stock’ models, and is visually similar

to that of the input image but is not a reconstruction of captured data. The synthesized

scene contains 3D models belonging to the correct semantic class but these models are

not the exact instance of the semantic class in the image. This is acceptable given that

the motivation here is to provide aid with automatic scene modeling inspired by real-

world scenes and the synthesized 3D worlds can then be enhanced by a modeling artist

or directly used for some purpose.

20

CHAPTER 3

DEPTH ESTIMATION OF MONOCULAR IMAGES

Depth estimation is a fundamental problem in computer vision and is a crucial step

in the reconstruction of 3D scenes. When provided with accurate image correspon-

dences, depth can be recovered deterministically for stereo images. Similarly, using

a sequence of 2D images, 3D scene structure can be estimated by leveraging camera

motion to determine a sequence of camera poses and in turn, estimate depth via trian-

gulation of feature points from pairs of consecutive views. However, most algorithms

able to recover depth from pairs of stereo images provide depth values only for these

specific correspondence points in the viewed scene. This sparse 3D map can be suf-

ficient for tasks such as navigation where the redundant information does not require

a dense 3D map. In the case of terrain reconstruction, a dense map is required [6].

Additionally, such approaches rely on the assumption that stereo pairs or multiple ob-

servations of the scene under different lighting conditions or in time are provided. Yet

the monocular case often arises in practice [12].

Depth estimation of a monocular image requires analysis of monocular depth cues

such as line angles and perspective effects, known object sizes texture details, lighting,

and atmospheric effects. Moreover, the task is inherently ambiguous, and a technically

ill-posed problem: Given an image, an infinite number of possible world scenes may

have produced it. Most of these are physically implausible for real-world spaces; there-

fore, the depth may still be predicted with considerable accuracy [12]. While humans

do well at this task by exploiting perspective, scale relative to known objects, shadows,

and occlusion, computationally estimating depth for a single, monocular image is an

ill-posed problem.

Early approaches resorted to exploiting statistically meaningful monocular cues or

features such as perspective and texture information, object sizes, object localization,

and occlusions [7]. More recently, learning based techniques have seen a surge in popu-

larity as well as success in depth estimation of monocular images. These have typically

posed the task of monocular depth estimation as a supervised learning problem and at-

tempt to directly predict the depth of each pixel in an image using models that have been

trained on large collections of ground truth depth data that is obtained using specialized

hardware [17]. Posing the problem as a supervised learning problem has its limitations

in that a large collection of images and their corresponding pixel depths are required.

Moreover, the trained models cannot be used to predict depth for scenes dissimilar from

the training images.

Given that we explore the construction of 3D worlds from monocular, RGB images,

a desirable solution to depth estimation would be one that accepts a single image as

input, can be retrained without requiring ground truth depth, and is capable of general-

ization with respect to the image scene. A solution given by Godard et al. uses a fully

convolutional model that does not require any depth data during training, and is instead

trained to synthesize depth as an intermediate output. The authors take an alternative ap-

proach and treat monocular depth estimation as an image reconstruction problem during

training by which neural net learns to predict the pixel-level correspondence between

pairs of rectified stereo images that have a known camera baseline. Their formulation of

the problem requires no ground truth pixel-depth data, operates on monocular images

and generalizes to different images [17]. A detailed description of their method follows.

3.1 Method

The network architecture proposed in [17] performs end-to-end unsupervised monoc-

ular depth estimation with a novel training loss that enforces left-right depth consistency

inside the network. The network first takes the left image of a rectified, stereo pair as

input and uses the right image for supervision. The idea comes from the assumption

that given accurate disparity estimates, one would be able to perfectly reconstruct the

right view from the left view of a stereo pair and vice versa. Figure FC3.1 illustrates

rectified, stereo image capture.

3.1.1 Depth Estimation as Image Reconstruction

The problem of learning based, monocular depth estimation can be expressed as

given a single image I, to learn a function f that can predict the per-pixel scene depth,

d = f (I). Most existing learning based approaches treat this as a supervised learn-

ing problem, where they have RGB input images and their corresponding ground truth

depth values at training. Here, the problem of depth estimation is posed as an image

reconstruction problem during training. The intuition behind this is that, given a cali-

brated pair of binocular cameras, if the network can learn a function that can reconstruct

one image from the other, then we have learned something about the 3D shape of the

scene that is being imaged. At training time the network has access to two images, Il

and Ir, which correspond to the left and right RGB images of a calibrated stereo pair.

Instead of trying to directly predict the depth as is done in the supervised case, the net-

work learns a dense correspondence field dr that, when applied to the left image, would

enable reconstruct the right image.

The reconstructed right image Ĩr = Il(dr). Similarly, the left can also be recon-

structed from the right image and Ĩl = Ir(dl). Assuming that the images are projected

Figure FC3.1: Stereo image capture.

onto a common plane parallel to a line between optical centers or rectified, then d cor-

responds to the image disparity or distance between two corresponding points in the left

and right image of a stereo pair - a scalar value per pixel that the model will learn to

predict. Given the baseline distance b between the cameras and the camera focal length

f , depth d̂ can be trivially recovered from the predicted disparity, as

d̂ = b f/d (Eqn 3.1)

3.1.2 Neural Network

The network estimates depth by learning the disparities that warp the left image of a

stereo pair to match the right one. The key insight of the method proposed in [17] is that

by simultaneously inferring both left-to-right and right-to-left disparities using only the

left input image, the network obtains better depths by enforcing them to be consistent

with each other. The network generates the predicted image with backward mapping

using a bilinear sampler, resulting in a fully differentiable image formation model.

During training, the model is given a stereo pair and the target is one of the two

images. This implies that the model must output an image governed by a reconstruction

loss between the output and target image. Given that the goal is to generate a depth

map, the model must output a disparity map. The network learns to generate per pixel

disparities that produce say the right target image, by shifting the pixels from the left

input image using an image sampler. A mesh grid with each pixel as a cell is shifted

to the right (supposing the input image is the left image) according to the value in the

disparity map. The final image is generated with backward mapping using a bilinear

sampler on the left image using the transformed mesh grid where the floating point

indexes are solved with bilinear interpolation.

A naive sampling of the left image to generate the right image produces a disparity

map that is aligned with the target instead of the input image. However, the output

disparity map must align with the input left image, since we want the depth map of

the input image, meaning the network has to sample from the right image. Simply

sampling the right image produces an input aligned disparity map; however, the inferred

disparities exhibit certain artifacts and errors. [17] solves these artifacts by training the

network to predict the disparity maps for both left and right views and sample from

the opposite input images. This still only requires a single left image as input to the

convolutional layers and the right image is only used during training. Using the left

image to produce disparities for both images, improves quality by enforcing mutual

consistency.

The network is a fully convolutional neural network and is composed of two main

parts - an encoder and decoder. The decoder uses skip connections from the encoder’s

activation blocks, enabling it to resolve higher resolution details. Disparity predictions

are outputted at four different scales, which double in spatial resolution at each of the

Figure FC3.2: Stereo Left-Right consistency.

subsequent scales. This improves the output resolution of the neural network. The

network takes a single image as input and predicts two disparity maps at each output

scale - left-to-right and right-to-left. Figure FC3.2 illustrates a summary of the network.

3.1.3 Loss Function

The loss at each output scale Cs is computed as

Cs = αap(Cl
ap +Cr

ap)+αds(Cl
ds +Cr

ds)+αlr(Cl
lr +Cr

lr) (Eqn 3.2)

where, Cap is the appearance matching loss and pushes the reconstructed image to ap-

pear similar to the corresponding training input, Cds is the disparity smoothness loss and

imposes smoothness in the disparity map, and Clr is the left-right consistency loss and

prefers the predicted left and right disparities to be consistent. While each of the main

terms contains both a left and a right image variant, only the left image is fed through

the convolutional layers. The total loss C is computed as

C =
4

∑
s=1

Cs (Eqn 3.3)

Appearance Matching Loss

The network generates an image by sampling pixels from the opposite stereo image

using the disparity map. A sampler must take the set of sampling points (here the

disparity map), along with the input feature map (here the input image) and produce

the sampled output feature map (here the output image). The image formation model

chosen in [17] uses the image sampler from Spatial Transformer Network [19] to sample

the input image. The STN uses bilinear sampling where the output pixel is the weighted

sum of four input pixels. A combination of single scale structural similarity (SSIM)

index and l1 norm is used to construct the appearance matching loss, Cap. SSIM is a

method used for measuring the similarity between two images as a quality measure of

one of the images being compared, assuming the other image is regarded as of perfect

quality.

Ll1(P) =
1
N ∑

p∈P
|x(p)− y(p)| (Eqn 3.4)

is the l1 loss where, where p is the index of the pixel and P is the patch; x(p) and y(p)

are the values of the pixels in the processed patch and the ground truth respectively [37].

SSIM for pixel p is defined as,

SSIM(p) =
2µxµy +C1

µ2
x +µ2

y +C1
·

2σxy +C2

σ2
x +σ2

y +C2
(Eqn 3.5)

where µi is the mean of i, σ2
i is the variance of i, σi j is the covariance of i and

j, C1 = (k1L)2 and C2 = (k2L)2 are two variables to stabilize the division with weak

denominator, L is the dynamic range of the pixel-values, and k1 = 0.01 and k2 = 0.03

by default. The means and standard deviations are computed with a Gaussian filter with

standard deviation σG. The loss function for SSIM

LSSIM(P) =
1
N ∑

p∈P
1−SSIM(p) (Eqn 3.6)

Cap compares the input image Il
i j and its reconstruction Ĩl

i j, where N is the number

of pixels,

Cl
ap =

1
N ∑

i, j
α

1−SSIM(Il
i j, Ĩ

l
i j)

2
+(1−α)

∥∥∥Il
i j− Ĩl

i j

∥∥∥ (Eqn 3.7)

The authors choose a simplified SSIM with a 3×3 block filter instead of a Gaussian

and set α to 0.85.

Disparity Smoothness Loss

The disparities are encouraged to be locally smooth with an l1 penalty on the dis-

parity gradients ∂d. Depth discontinuities occur at image gradients, for example where

one object occludes another (or another part of itself), or between adjacent faces of the

same object. This cost is weighted with an edge-aware term using the image gradients

∂ I,

Cds =
1
N ∑

i, j
|∂xdl

i j|e
−‖∂xdl

i j‖+ |∂ydl
i j|e
−‖∂ydl

i j‖ (Eqn 3.8)

Left-Right Disparity Consistency Loss

To overcome artifacts, the authors train the network to predict both the left and right

image disparities, from only the left view as input to the convolutional neural network.

To ensure coherence, an l1 left-right disparity consistency penalty is used. This cost

attempts to make the left-view disparity map equal to the projected right-view disparity

map.

Cl
lr =

1
N ∑

i, j
|dl

i j−dr
i j+dl

i j
| (Eqn 3.9)

The same equation is mirrored for the right-view disparity map.

3.2 Our Use and Results

A model trained on the Cityscapes dataset [9] was plugged into the pipeline to gen-

erate the depth map for the 3D construction. Figure FC3.4 shows results of a trained

model on images from Cityscapes. Although the images used for testing the proposed

pipeline were taken from Cityscapes, the same model was tested on arbitrary Web

search result images of Indian roads for which assumptions of well-delineated infras-

tructure such as lanes, a small number of well-defined categories for traffic participants,

low variation in object or background appearance and strict adherence to traffic rules are

not largely satisfied [34]. The model is able to generalize and despite the differences

in location, image characteristics, and camera calibration produces visually plausible

disparity maps as in Fig. FC3.3. If the focal length and the aspect ratio are different

from that of the training dataset, the depth map produced using Eq. Eqn 3.1 might not

be reliable [17].

As mentioned, the input images used for reconstruction are taken from the Cityscapes

dataset. For Cityscapes the camera baseline is 0.22m and the focal length is 2262 for

a width of 2048 pixels. The disparities generated by the model are normalized by the

image width, this is scaled by width to get the value in pixels. Finally,

depth =
0.22×2262
2048×disp

(Eqn 3.10)

3.3 Discussion

The model generates a good estimate of pixel depths. There are still some artifacts

visible at occlusion boundaries due to the pixels in the occlusion region not being visible

in both images [17]. Since the method mainly relies on the image reconstruction term,

specular and transparent surfaces will produce inconsistent depths (as sometimes seen

in vehicle windows). However, given its application here, where an average depth value

is considered for every object, the numerical consequences of these artifacts do not

matter much.

The described method requires rectified and temporally aligned stereo pairs during

training. Retraining the model requires more easily available stereo image data as op-

posed to ground truth depth which is significantly harder to obtain and is often noisy.

As shown above, a model trained on Cityscapes traffic scenes generalizes well enough

to produce visually plausible disparity maps when tested on images on Indian traffic

scenes.

Comparable related work includes that of Eigen et al. [12], Liu et al. [24] and Gard

et al. [14]. Eigen et al. [12] proposed a supervised, multi-scale network for prediction.

A coarse-scale network first predicts the depth of the scene at a global level which

is then refined within local regions by a fine-scale network with the coarse network’s

output passed to the fine network as additional first-layer image features [12]. Liu

et al. formulated the depth estimation as a supervised, deep continuous Conditional

Random Fields (CRF) learning problem, without relying on any geometric priors. Garg

et al. [14], similar to Godard et al. [17], proposed an unsupervised model by training

the network in a manner analogous to an autoencoder. At training time they consider

a stereo pair and train a convolutional encoder to predict the depth map for the source

image. They do so by generating an inverse warp of the target image using the predicted

depth and known camera displacement in order to reconstruct the source image; the

(a)

(b)

(c)

(d)

(e)

Figure FC3.3: Disparity map of arbitrary images outside of the training datasets.

(a)

(b)

(c)

Figure FC3.4: Images from the Cityscapes dataset, the output disparity map, and corresponding
depth map.

photometric error in the reconstruction is used as the reconstruction loss for the encoder.

The results in Table TC3.1 show that the method of Godard et al. [17] yields superior

results over the others.

Our problem is to construct a 3D world from a monocular image. This method is

easily plugged in as a module in the 3D synthesis pipeline. It was chosen for many rea-

sons among which include its superior results over other supervised and unsupervised

Method Supervised Abs Rel Sq Rel RMSE RMSE log δ < 125 δ < 1.252 δ < 1.253

Eigen et al. [12] Coarse Yes 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. [12] Fine Yes 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [24] Yes 0.201 1.584 6.471 0.273 0.68 0.898 0.967
Garg et al. [14] No 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Gordard et al. [17] No 0.108 0.657 3.729 0.194 0.873 0.954 0.979

Lower is better Higher is better

Table TC3.1: Comparison of results on KITTI [15] using the split of Eigen et al. [12], the
predictions of Liu et al. [24] generated on a mix of the left and right images instead of just the
left input images., the results of Garg et al. [14] and Godard et al. [17].

methods (see Table TC3.1), that it runs on a single image as input, can be retrained with

more easily available stereo image pairs and generates visually plausible disparity maps

for images that differ from training set scenes(see Figure FC3.3). With the emergence

of stereo camera devices and new datasets like IDD [34] it would be a simple task to

retrain the model for Indian traffic scenes and apply the same approach proposed in this

thesis. 1

1Godard et al. have recently proposed an improved version of [17], in [16] that can be trained on just monocular
video. They have introduced three contributions: a minimum reprojection loss, computed for each pixel, to deal with
occlusions between frames in a monocular video, an auto-masking loss to ignore confusing, stationary pixels, and a
full-resolution multi-scale sampling method. Their model can be trained with monocular video data, stereo data, or
mixed monocular and stereo data.

33

CHAPTER 4

PERSPECTIVE CORRECTION

Capturing a 2D image involves a perspective projection of a 3D world. Due to the

projection, a captured image contains some distortion caused by a foreshortening factor

and vanishing point projection. We can recover the world space position of an object

in the scene along the Z-axis from the depth map obtained from the trained model

described in Chapter 3. The position of an object along the X-axis cannot directly

be recovered from the 2D image owing to perspective projection distortions by which

parallel lines no longer remain parallel but appear to meet at some point.

Since the perspective view of the captured image distorts the actual shape of the

road and other objects in the scene, which includes the width, height, and depth, or the

X, Y, and Z components respectively, the image coordinates need to go through a pre-

processing stage to correct or reverse the perspective distortion to obtain the undistorted

world coordinates. In this chapter, we describe how we correct perspective distortion to

obtain undistorted world coordinates of objects.

4.1 Perspective Projection Geometry

Perspective projection is a linear transformation where three-dimensional objects

are projected onto a plane with the effect of distant objects appearing smaller than closer

objects. This also means that lines which are parallel in the original coordinate space

appear to intersect in the transformed coordinate space or the projected image. For

example, railway lines when pictured with perspective projection appear to converge

at a single point in the distance, called the vanishing point. Photographic lenses, like

the human eye, view the world in a similar fashion which is why perspective projection

looks the most realistic.

The principal vanishing point is the vanishing point of all horizontal lines perpen-

dicular to the picture plane. If, as is often the case, the projection plane is vertical, all

vertical lines have no finite vanishing point on the picture plane. Perspective projection

makes distant objects appear smaller to provide additional realism.

Many-to-one Mapping The projection of a point is not unique. Any point on the

line OP in Fig. FC4.1 will be projected to the same point Q.

Scaling/Foreshortening When a line is parallel to the image plane, the effect of

perspective projection is scaling. When a line is not parallel to the image plane, the

effect of projective distortion is foreshortening, that is the dimension parallel to the

optical axis is compressed relative to the frontal dimension.

Effect of Focal Length As f gets smaller, more points project onto the image plane

or the camera becomes wide-angled. As f gets larger, the field of view becomes smaller

or more telescopic.

Lines, Distances & Angles Distances and angles are not preserved is perspective

projection. Parallel lines do not project to parallel lines (unless they are parallel to the

image plane).

Vanishing Point Parallel lines in space project perspectively as lines that on exten-

sion appear to intersect at a some point in the image plane called vanishing point.

4.1.1 Pinhole Camera

A pinhole camera is a camera with a point-sized aperture and no lens. The pinhole

camera model is a good approximation to the behavior of most real cameras, and so

provides an entry into understanding perspective projection geometry. It describes the

mathematical relationship between the coordinates of a point in three-dimensional space

and its projection onto the image plane by an ideal pinhole camera, that is where the

camera aperture is a point and no lenses are used to focus light.

Figure FC4.1: Pinhole camera projection.

The projection of a pinhole camera is illustrated in Fig. FC4.1. The components of

the figure are

• A 3D, orthogonal coordinate system with its origin at O. The three axes of the

coordinate system are X ,Y,X . The Z axis points in the viewing direction of the

camera and is known as the optical axis, principal axis, or principal ray. The plane

which is spanned by axes X and Y is the front side of the camera or principal plane.

• A pinhole camera with its aperture located at the origin O. The aperture of the

camera is assumed to be infinitely small or a pinhole.

• An image or projection plane, on which the 3D world is projected through the

camera aperture. The image plane is parallel to plane spanned by the X and Y

axes and is located at a distance f from the camera aperture in the negative Z

direction. This distance f is the focal length of the pinhole camera.

• A point R at the intersection of the optical axis and the image plane. This point is

the image center.

• A point P somewhere in the world at (x,y,z).

• The projection line of point P into the camera aperture, that is the line joining

points P and O.

• The projection of P onto the image plane, at Q or the point at which line PO

intersects the image plane.

• A 2D coordinate system in the image plane, with the origin at R and axes U and V

which are parallel to X and Y respectively. The coordinates of the projected point

Q in this coordinate space are (u,v).

To understand how Q can be derived from P, we can use Fig. FC4.2 which shows

the same scene as the Fig. FC4.1 but from above, looking down in the negative direction

of the Y axis.

There are two similar triangles in Fig. FC4.2, that both have segments of the pro-

jection line as their hypotenuse. The catheti (sides adjacent to the right angle) of the

left triangle are u and f and the catheti of the right triangle are x and z. Since the two

Figure FC4.2: Projection seen from Y axis.

triangles are similar,

u
f
=

x
z

or u =
f x
z

(Eqn 4.1)

Similarly,

v
f
=

y
z

or v =
f y
z

(Eqn 4.2)

This equation can be summarized as

u

v

=
f
z

x

y

 (Eqn 4.3)

Looking at Fig FC4.1 of the pinhole camera model, it is clear that as one moves

further along the Z axis, the value of z will increase. From Eq. Eqn 4.3, it can be seen

that an increase in the value of z will cause the object (of width u and height v) to reduce

in size and this phenomenon is known as a foreshortening factor. A vanishing point, on

the other hand, occurs when a set of projected parallel lines appears to converge and

intersect at a point, see Fig. FC4.3.

Figure FC4.3: Vanishing point as a result of perspective projection.

4.2 Perspective Correction

To synthesize a 3D world from an image, we require four main parameters —the

semantic class of the object and its position in world space described by X ,Y,Z. The

type of objects present in the scene is obtained from a semantic segmentation of the

image. Merely using the extents of a bounding box drawn around each object segment

will be insufficient to recreate the scene in 3D given that the image has been captured

in perspective projection. The dotted orange lines in Fig. FC4.4 show how the parallel

lines of the road are no longer parallel. Similarly, the parked cars that would line up

in a straight line in the real world, no longer look they are along a line parallel to the

sidewalk. The imagined bird’s eye view in Fig. FC4.5 is the ideal arrangement of the

scene during the 3D world synthesis.

An accurate synthesis of the corresponding 3D world will require that the image

Figure FC4.4: An image from Cityscapes and its segmented image.

Figure FC4.5: Imagined bird’s eye view of the road scene in Fig. FC4.4.

coordinates of each object first be remapped to its original world coordinates which can

then be used to arrange the scene in 3D. The neural network described in Chapter 3

yields a dense depth map for an input image. Values within each object segment can

be averaged to yield a single depth for each object. In other words, we have already

recovered the Z coordinate of every object of interest in world space. Since the scenes

in consideration are that of urban roads, we can make the assumption that all objects

of interest —vehicles, vegetation, buildings— lie on the ground plane, or that the Y

coordinate in world space for each object is 0. The only coordinate that remains to be

found is the X coordinate.

In effect, to construct a 3D world out of an image scene we seek to derive the value

of some matrix P where

Ui = PXi (Eqn 4.4)

where Ui is a set of projected image coordinates, Xi is the corresponding set of

coordinates in world space and, P is a projection matrix that transforms every Xi to Ui.

Eq. Eqn 4.4 can be expanded as

ui

vi

1

=

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

xi

yi

zi

1

 (Eqn 4.5)

Since all objects of interest have been assumed to be on the ground plane, yi = 0,

Eq. Eqn 4.5 can be simplified to

ui

vi

1

=

p11 p12 p14

p21 p22 p24

p31 p32 p34

xi

zi

1

 (Eqn 4.6)

Given a point Ui in the image space, zi can be obtained by look up from the corre-

sponding depth map, and xi can be estimated as shown in Fig. FC4.6 and accordingly

scaled in the graphics pipeline. The intuition is that the base of the image represents

objects closest to the camera, and the points along this line can be assumed to be undis-

torted by perspective projection.

Once we have a set of point correspondences Ui and Xi we can derive the matrix P

using some approximation method.

Figure FC4.6: A way to ‘guesstimate’ xi.

4.2.1 Direct Linear Transform

This problem of determining the camera matrix from know scene points and pro-

jections is called the resection problem. Direct Linear Transform (DLT) is a popular

method for determining camera calibration [1]. DLT uses a set of control points in the

image space whose world space coordinates are already known. The goal is essentially

to calculate the mapping between the 2D image space coordinates and the 3D object

space coordinates. The correspondence between 3D and 2D takes the form of a 3× 4

projection matrix P and is expressed by Eq. Eqn 4.4. While DLT is typically used to

estimate camera pose, here we use it to simply find a mapping between our known point

correspondences.

From Eq. Eqn 4.4, P=K[R t], where K is a 3×3 matrix, R is a 3×3 rotation matrix,

and t is a 3×1 vector. The 3×4 matrix [R t] encodes the orientation and position of the

camera with respect to a reference coordinate system. Given a 3D point in homogeneous

coordinates X the product [R t]X can be interpreted as the 3D coordinates of the scene

point in the camera coordinate system. The 3×3 matrix K transforms the image plane

in R3 to the real image coordinate system with unit pixels [33], see Figure FC4.7. At

least 6 point correspondences are needed in order for the problem of finding the 3× 4

matrix to be well defined.

Figure FC4.7: Transformations involved in projection.

Given our assumption that all objects of interest lie on the ground plane or yi = 0,

the point transformation is simplified to Eq. Eqn 4.6. This corresponds to the 2D case of

DLT where the solution matrix has dimension 3×3. This is additionally advantageous

because a 3× 3 matrix can be invertible and given a point in image space, the inverse

of the solution matrix obtained can be used to obtain the approximate 3D position. The

DLT method itself obtains a solution by formulating a homogeneous linear system of

equations and finding an approximate null space of the system matrix.

Let pi, i = 1,2,3 be 3×1 vectors containing the rows of P, that is,

P =

pT

1

pT
2

pT
3

 (Eqn 4.7)

then Eq. Eqn 4.4 can be written as,

Ui =

pT

1 Xi

pT
2 Xi

pT
3 Xi

 (Eqn 4.8)

Since, Ui = PXi, we can infer that Ui and Xi are parallel. Therefore,

Ui×PXi = 0 (Eqn 4.9)

Ui×PXi =

vi pT

3 Xi− pT
2 Xi

pT
1 Xi−ui pT

3 Xi

ui pT
2 Xi− vi pT

1 Xi

=

0T −XT

i viXT
i

XT
i 0T −uiXT

i

−viXT
i uiXT

i 0T

p1

p2

p3

= 0

(Eqn 4.10)

Since Xi is a 3× 1 vector each 0 on the left hand side represents a 1× 3 vector of

zeros. Thus the left hand side is a 3×9 matrix multiplied with a 9×1 vector. However,

ui pT
2 Xi− vi pT

1 Xi =−ui(vi pT
3 Xi− pT

2 Xi)− vi(pT
1 Xi−ui pT

3 Xi)

that is the third equation in the matrix is linearly dependent on the first two and as

such can be discounted. This leaves,

0T −XT
i viXT

i

XT
i 0T −uiXT

i

p1

p2

p3

= 0 (Eqn 4.11)

or,

AP = 0 (Eqn 4.12)

which represents a system of homogeneous equations in matrix form. From a set of

n, n≥ 4, point correspondences we have a 2n×9 matrix A formed by stacking each of

the equations from their respective point correspondences. The projection matrix for a

given camera can then be computed by solving the set of equations AP = 0.

This has a trivial solution at P = 0 and is, in fact, homogeneous in P. If P 6= 0 is a

solution then kP is also a solution, where k is an arbitrary scalar. For this reason, we fix

the length of the solution vector with the requirement that ‖P‖2 = 1.

The homogeneous system has no solution when it is overdetermined and A is full

rank, i.e. rank(A) > 3. This is typically the cases — the system of equations will not

have any exact solution due to noise in the measurements [33]. In these cases we look

for a solution to AP≈ 0 and use the least squares criterion,

min‖AP‖2 (Eqn 4.13)

with ‖P‖2 = 1, i.e. we look for a solution to the homogeneous least squares problem.

This results in the eigenvalue problem

min
‖P‖2=1

‖AP‖2 (Eqn 4.14)

and can be determined by a singular value decomposition of A into USV T where P

is a right singular vector of A corresponding to the smallest singular value of A or the

last column in V . Once P has been determined, the actual matrix can be found by a

simple rearrangement from a 9D vector to a 3×3 matrix.

Theorem 1. Each m×n matrix A (with real coefficients) can be factorized into

A =USV T (Eqn 4.15)

where U and V are orthogonal (m×m and n×n respectively), and

S =

diag(σ1,σ2, ...,σr) 0

0 0

where, σ1 ≥ σ2 ≥ ... ≥ σr > 0 are the singular values of A or the square root of the

eigenvalues of AT A and r is the rank of the matrix.

If A has the SVD given by Eqn 4.15 then

AT A = (USV T)TUSV T =V STUTUSV T =V ST SV T (Eqn 4.16)

Since ST S is a diagonal matrix this means that V diagonalizes AT A and therefore ST S

contains the eigenvalues and V the eigenvectors of AT A. The diagonal elements of ST S

are ordered decreasingly σ2
1 ;σ2

2 ; ...;σ2
r ,0, ...,0. Thus, to find an eigenvector correspond-

ing to the smallest eigenvalue we should select the last column of V .

Using Equation Eqn 4.15 in Eqn 4.14 we get the minimization problem

min
‖P‖2=1

‖AP‖2 = min
‖P‖2=1

∥∥USV T P
∥∥2

= min
‖P‖2=1

∥∥SV T P
∥∥2

since U is orthonormal

(Eqn 4.17)

‖P‖2 =
∥∥V T P

∥∥2
(Eqn 4.18)

By defining
∥∥V T P

∥∥2 as ‖Y‖2 we reduce the problem to

‖Y‖2 = ‖SY‖2 (Eqn 4.19)

Since S is a diagonal matrix and σi ≥ σi+1, the least square solution reduces to

Y = [0 0 . . .0 1]T . The solution of the original problem is

P = (V T)−1Y =VY =V

0

0
...

0

1

(Eqn 4.20)

which is the last column of V or the right singular that corresponds to that smallest

singular value of A.

In summary, to solve for the projection matrix P

• Set up the linear homogeneous system AP = 0 for a minimum of 4 point corre-

spondences

• Compute the singular value decomposition A =USV T

• Extract the solution v from the last column of V

• Rearrange the solution to form a 3×3 matrix

• Compute the inverse of the matrix obtained.

4.3 Discussion

We conducted various experiments to obtain a low error mapping from image space

and world space points, after which we chose DLT as the preferred method. We ob-

served that as the choice and the number of selected points changes the projection ma-

trix obtained, and this, in turn, affects the positions of objects of in 3D world space.

4.3.1 Monte Carlo Optimization

Monte Carlo methods use repeated random sampling to generate numerical results.

The underlying idea is to use randomness to solve problems that might be deterministic

in principle. As a method of numerical optimization, Monte Carlo methods can be used

to minimize or maximize functions of some vector with large dimension.

In the case of projection matrix derivation, we experimented with Monte Carlo sim-

ulations as random perturbations of an initial identity matrix until it projected known 3D

coordinates to known 2D coordinates. If a random perturbation caused a 3D in world

space to get closer to its target 2D projection in image space, then we keep that matrix

as an improvement over our initial (or previous) guess, else the simulation continues.

We run this over several hundred epochs or until the matrix no longer fluctuates with

perturbation.

To evaluate how close the matrix is to the correct solution, the method requires some

function of the matrix. The value returned by this function is what we use to check

whether one matrix is better than another. The function we chose here was the average

of the sum of squared distances between the target 2D points and 2D points obtained by

multiplication with the obtained matrix. To perturb the matrix, we generated a random

number from a uniform distribution between some range.

When run over significant number epochs, in most cases the error metric is reduced

to the order of 10−2. However, when tested over points not included in the training set,

the matrix does not perform accurately. In some cases, the error metric remains stuck

at some value and no perturbation is able to reduce it.

4.3.2 Choice of Points for DLT

Figure FC4.8: Sample choice of points.

As the number of point correspondences increases, the error between the trans-

formed points obtained by multiplication with the matrix obtained from the DLT method

and the original points increases. Based on various experiments, we have observed that

5 to 6 points results in a projection matrix with a small error in mapping and gives

visually acceptable results in an orthographic view, and then results that resemble the

original photo when rendered with a perspective projection. In general 2 points along

the pavement edges at the bottom and 3 or 4 points distributed among objects of consid-

eration in the scene produce the best results. Figure FC4.8 illustrates a sample choice

of points based on our guidelines.

Normalization of both image space and world space points does not improve the

accuracy of the obtained matrix. In most cases, the synthesized scene looks ‘off’ in

comparison to its target image.

49

CHAPTER 5

3D SYNTHESIS PIPELINE

Chapters 3 and 4 describe the methods behind monocular depth estimation and

perspective correction respectively — the two main modules to the image synthesis

pipeline. Monocular depth estimation is performed using a fully convolutional neural

network that treats the input image as the left image of a stereo pair and instead of trying

to directly predict the depth, outputs the dense correspondence field d that, when ap-

plied to the left image, would enable us to reconstruct the right image, where d actually

corresponds to the image disparity. Depth is then trivially calculated from the predicted

disparity as b f/d where b and f are the baseline and focal respectively. Perspective

correction is performed by estimating a mapping between ground plane points, Y = 0,

in 3D world space and 2D projected image space points. By assuming the groundedness

of points, the projection matrix is reduced to a 3×3 matrix that is estimated using DLT

and SVD.

In this chapter, we detail the modules of 3D synthesis pipeline. As previously ex-

plored, 3D scenes are traditionally constructed manually by 3D artists who very often

take inspiration from or model parts of the real world. In contrast, our proposed work-

flow leverages advances in deep learning networks to automatically model urban traffic

scenes. By automating object placement, our proposed pipeline could save much time

and effort that goes into the manual design and laying out of such scenes.

5.1 Pipeline Description

The proposed pipeline is intended for use on urban, outdoor scenes with straight

roads and the primary objects of interest being cars, people, trees, buildings, and side-

walks. The image set around which this pipeline has been implemented is the Cityscapes

dataset [37]. An overview of our pipeline is provided in Figure FC5.1.

Figure FC5.1: 3D synthesis pipeline.

5.1.1 Dataset and Model

We use the Cityscapes dataset [9], a benchmark suite and large-scale dataset meant

to train and test approaches for pixel-level and instance-level semantic labeling. Cityscapes

is comprised of a large, diverse set of stereo video sequences from many European

cities. Several hundreds of thousands of frames were acquired from a moving vehi-

cle during the span of several months, covering spring, summer, and fall in 50 cities,

primarily in Germany.

Images in the dataset are recorded with an automotive-grade 22 cm baseline stereo

Figure FC5.2: Number of finely annotated pixels per class and their associated categories taken
[9].

camera. The sensors were mounted behind the windshield and yield high dynamic-

range (HDR) images with 16 bits linear color depth. Each 16-bit stereo image pair was

subsequently demosaiced and rectified. 5000 images are finely annotated by semantic

class —we use these images to test our pipeline. These fine pixel-level annotations

consist of layered polygons and required more than 1.5 h on average for a single image.

Annotators labeled the image from back to front such that no object boundary was

marked more than once. Each annotation thus provides a depth ordering of the objects in

the scene [9]. A table of semantic classes is provided in Table TC5.1 and the distribution

of per pixel classes is shown in Figure FC5.2. Our classes of interest are sidewalk,

building, person, vegetation and car.

Class Category

unlabeled void

ego vehicle void

rectification bor-

der

void

out of roi void

static void

dynamic void

ground void

road flat

sidewalk flat

parking flat

rail track flat

building construction

wall construction

fence construction

guard rail construction

bridge construction

tunnel construction

pole object

polegroup object

traffic light object

traffic sign object

vegetation nature

terrain nature

person human

rider human

car vehicle

truck vehicle

bus vehicle

caravan vehicle

trailer vehicle

train vehicle

motorcycle vehicle

bicycle vehicle

license plate vehicle

Table TC5.1: List of classes and their corresponding categories used to semantically segment
images in Cityscapes.

We use a pre-trained model by Godard et al. [17], trained on Cityscapes (which has

a train/val/test set with 22,973 training images). The total size of all the images 110

GB. The model was trained for 50 epochs, with a 512x256 resolution, a batch size of 8

and a VGG encoder-decoder.

5.1.2 Depth Estimation

A single input image is run through the depth estimation model described in Chapter

3 trained on Cityscapes. The network outputs a disparity map which is then converted

to a depth map using the formula b f/d. The baseline and focal for Cityscapes is given

to 0.22m and 2262 pixels respectively. The model takes on the order of 35 milliseconds

to predict a dense depth map for a 512×256 image on a modern GPU [17].

The dense depth map obtained gives a depth value for every pixel in the image.

We pass the ground truth semantic labels along with the raw, predicted depth values

to the depth estimation module of our pipeline to estimate the average depth of each

object of interest. The Cityscapes images are labeled from back to front such that

no object boundary was marked more than once [9]. While the labeling of segments

accounts for occlusion of one object by another the predicted depth map does not. Only

the visible pixel is given a depth value. Therefore, while computing average depth,

occluded objects can get inaccurate. In addition, depth estimation becomes noisier for

objects farther away from the camera [17].

To correct for this, we make the assumption that the depth of all points along the

same line Y = c in image space and that are on the ground plane in world space have

the same depth. In Figure FC5.3 each colored line represents a different value, and

all points on the line (not including the breaks) have the same depth. We compute the

bounding box of each segment and consider the Y value (increases downwards) of the

bottom corner to be the point at which the object touches the ground in the image. An

object with a higher value of Y must be closer to the camera and have a smaller depth

value.

The objects are sorted in increasing order of average depth and their ground points

are compared in two ways:

• If two objects have comparable Y , say less than 10 pixels values, and their average

depths differ by more than some threshold, then we set the average depth of both

to be the average-depth of the closer object.

• If an object with a higher Y value has greater depth than the closet object with a

lower Y value, we move the former behind the latter in 3D space.

Figure FC5.3: Depth values along the lines Y = y in image space and on the ground plane can be
assumed to have the same depth. Each coloured line represents a different value, and all points
on the line have the same depth. Note that no line is drawn through objects since these are not
on the ground. In terms of Y , a > b > c > d and in terms of corresponding depth, a < b < c < d.

Once the average depths of every object are computed, we run a simple collision

detector to ensure that no object intersects into another object along the Z-axis. The

final average-depth value obtained is used to translate a model of the particular object

class along the Z-axis in the rendering engine.

5.1.3 Perspective Inversion

The user selects ground points on the image to estimate the inverse projection ma-

trix. The world space depth is obtained by a simple look up from the predicted depth

map at the selected pixel index, and the user gives a guessed estimate of what the world

space X coordinate is. No Y coordinate is required since we assume all selected points

are on the plane Y = 0. The guesstimate X-coordinates are given as pixel values, and

not in meters (see Figure FC4.6). A capture of this interaction is seen in Figure FC5.4.

The projection matrix is computed by a singular value decomposition of the matrix

A as described in Chapter 4 and its inverse is taken. The user gets an idea of the accu-

racy of the matrix obtained with his/her choice of points by the root mean square error

(RMSE) between the results of multiplying the selected image points with the computed

matrix and the guesstimated points. The RMSE reported is in pixels.

To obtain the position of each object in world space the X-coordinates of the left

and right corners of the bounding box around each segment is multiplied by the inverse

matrix obtained. The center of the object is translated along X by this value in the

rendering engine.

5.1.4 Model Loading

We manually curated a small database of models based on the classes of interest

from Cityscapes. We fixed the orientation of every model in 3D space as well as man-

ually set the scale of every object with respect to another other. The X-coordinate,

Z-coordinate, and class label are sent to the rendering engine. The database is looked

Figure FC5.4: Point selection by the user. A point on the image is double clicked and the
‘guesstimated’ X coordinate is entered by the user. The corresponding Z coordinate is picked
up from the depth map. Once points are selected DLT is used to obtain the transformation matrix
by computing the SVD on the linear homogeneous system of points. By increasing the number
of known point correspondences, the accuracy in the mapping decreases.

up using the class label and a model corresponding to the label of a particular segment

is loaded into the scene at the world space coordinates, with fixed orientation and scale.

For example, if an object in the image has been semantically segmented as ‘car’ the

rendering engine loads a generic hatchback or SUV (using a random number generator)

to construct the 3D world. A woman in an image is semantically labeled as ‘person’

and the engine will load a generic model of a male human, Similarly, a generic tree is

loaded for ‘vegetation’ even if the object in the image might be a shrub.

At present no interactive user interface has been designed to allow a user to change

the type of 3D model that is loaded into a scene for a particular object class. This can

be considered as future user interface additions to enhance the kind of 3D world our

prototype application is able to construct. The ,Y,Z positions of each model in the final

scene is written to a text file for future use or loading by some engine.

5.2 Results

We tested our pipeline on images of straight roads from Cityscapes with our primary

objects of interest are vehicles, trees, sidewalks, people and buildings. The implementa-

tion is limited to straight roads without breaks and curves. We have rendered the scene

without any textures, using a perspective projection in OpenGL, ambient lighting, a

Phong shader, and a shadow map. The rendered result may look slightly different ow-

ing to the difference between the image camera’s orientation and the OpenGL camera

and projection. In the results seen in Figure FC5.5 one can see that object models have

been loaded at the right positions and right depth with minor differences.

5.3 Discussion

The accuracy of the 3D scene produced or its resemblance to the input image in

terms of object placement is highly dependent on the points that are chosen by the user

and the error in the matrix mapping. However, if integrated into a modeling software

like Blender, adjustments can be models using moving tools. This will not be cumber-

some since our pipeline models a large portion of the scene and minor adjustments and

fine-tuning of the scene can be done by hand.

One limitation of our pipeline is pose or orientation estimation of every object. We

have not identified a method capable of detecting the orientation of an object with re-

spect to the camera. In our prototype implementation, we make assumptions for the

orientation of vehicles and the side of the road they are on, but nothing more. Again,

our statement above could apply here as well —once the basic is scene is modeled ori-

entation and other adjustments to position can be done by hand. Object pose estimation

is an area of research in machine learning and we hope that perhaps a combination of

template matching and deep learning can be used to automatically estimate the rotation

(a)

(b)

(c)

(d)

(e)

Figure FC5.5: 2D input image and corresponding 3D construction using our proposed pipeline.

of each object about the Y-axis.

Real, urban scenes are rich in variety with respect to the kind of cars, the kind of

vegetation and building facades. We have provided a very limited database of generic

models for each object class in our proof of concept application. As mentioned an

implementation of our workflow can be extended to include a richer database that addi-

tionally allows the user to select the model being loaded into the scene for a particular

class.

60

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we have proposed a workflow to automatically construct 3D scenes

based on a reference monocular image with minimal user input. The workflow we have

proposed can be operated to generate 3D visualizations of urban traffic scenes which

can be used as a base for AR and VR environments, urban planning, video games, and

simulation environments. The main inspiration behind our work is the time and manual

effort that goes into scene modeling as well as the vast collection of images on the

Web which can be used to construct 3D worlds and are used by artists anyway. An

implementation of our workflow is meant to speed up the process of scene modeling

and constructs a basic 3D scene that can later be detailed. Two key ideas that drive our

workflow are the use of deep learning to estimate depth and perspective correction to

get real-world positions from an image.

Prior approaches to modeling from images look more at the reconstruction of 3D

scenes to aid navigation or provide point cloud visualizations rather than the construc-

tion of high quality, 3D scenes that can be used in the above mentioned areas. We

make a distinction between the terms reconstruction and construction to indiciate the

difference in the output and the goal of each. Our workflow has been designed keeping

a single, monocular image as input at the heart of it. The depth estimation network

proposed by Godard et al. [17] was specifically chosen since although trained on stereo

pairs, the trained model runs on a single, monocular image. Moreover, since the net-

work does not rely on ground truth depth, it can if needed, be retrained with stereo data

that is more easily attainable that RGBD data. Our workflow is able to produce good

approximations of scenes as demonstrated.

6.1 Future Work

Curved Roads

Any curvature in roads has been discounted, that is, our workflow currently works

well for straight roads. Computing lane curvature is slightly more complex, and an

inverse projection as we have done so will not work. Algorithms to compute curvature

such as [21, 38] can be integrated to generate scenes with curving roads.

Choice of Models

The prototype of this application does a simple lookup in a small library of 3D

models that we have curated based on the class of an object in the scene. A generic 3D

model is loaded giving a user no choice into what instance of the class is loaded. Our

workflow can be upgraded to include a user interface that allows a user choice of what

model is loaded into the scene similar to [28] where the semantic class of the object

is known the user is posed with multiple model instances of that class who can then

choose the closest match, see Figure FC6.1. This would allow the user to pick a 3D

model that is the closest to an object in the scene, creating more visual similarity.

Detailing Scenes

The objects of interest in our present workflow are trees, vehicles, buildings, side-

walks, and people. This is partly due to the fact that depth estimation for small/slender

objects in the scene is noisier than for larger objects. With objects like vehicles, noisy

Figure FC6.1: Model selection by Sankar [28]

depth values for pixels within the object segment are averaged out unlike with more

slender objects like poles. However, any urban scene contains barricades, road mark-

ings, shrubs, poles, street lights, traffic lights, signs and so on. An example of a more

detailed scene is given in Figure FC6.2. While improvements in monocular depth es-

timation could help, to allow for further detailing this workflow could be made part of

a consumer modeling software like Blender, where once the basic scene has been auto-

matically modeled the user has the option of continuing the modeling process with the

generated scene.

From the modeling process described in Chapter 1, a bare-bones scene is first mod-

eled and then details are added in. It follows naturally that introducing such an auto-

mated scene modeling system into professional software like Blender, to automate the

initial modeling process, would allow a user more time to pay attention to the detailing.

Aerial Images

The same idea can be extended to construction from aerial images. This would be

easier given that the aerial view is likely to be undistorted. Depth and positional along

X can be directly inferred. However, aerial images are considerably harder to obtain

Figure FC6.2: A more detailed scene of an urban road. Image credit: Shutterstock

than street level images.

Orientation

The orientation or pose of objects in the scene is not automatically estimated. Cur-

rent object orientation is fixed based on the which half of the image they lie on. For

example, traffic on the left lane can be usually considered to be facing the user and

vice versa. However, this need not always be true. Cars can be parked perpendicular to

sidewalks, people can be facing the side of a road, on road traffic can be facing either

forwards or backward. A learning-based algorithm that computes the rotation of an ob-

ject about the Y axis can be used to construct more accurate scenes. Given that semantic

segments are passed to the implementation, these could be used to localize objects of

interest and train a learning algorithm to correctly predict orientation.

City Modeling

Image-wise constructions can be fitted together to create large urban geographies

as seen in Figure FC6.3. Multiple images could be used each starting off where the

previous image ends and the modeled scenes could be stitched together to create one

large scene. (This would require that curved or turning roads are captured.)

Deep Learning for Placement

Figure FC6.3: 3D digital model of Manchester. Image credit: VU.CITY.

Given the success of deep learning in learning functions, it would be interesting to

see if deep learning models could be used to predict the corresponding world space

coordinates for given pixel space coordinates. Since there are dedicated methods used

to determine depth, this would narrow down to learning a function that can predict

world X-coordinates.

6.2 Summary

In this thesis, we introduced the problem of automatically constructing or synthe-

sizing 3D worlds from monocular images, along with a workflow for the automated

modeling of a subset of 3D, urban scenes from single images. Once the basic scene is

set up using our woeklow it can be further detailed, animated and used as a production

worthy 3D environment. Given the demand for 3D content and the tendency of artists

to look at real-world images for inspiration and reference we strongly believe that an

automated system capable of generating 3D scenes that are visually similar to an input

image can speed up modeling time as well and make it easier to capture the real world

in 3D. Our prototype works for a subset of urban traffic scenes and we think it presents

a useful direction for future research.

66

Bibliography

[1] Y. Abdel-Aziz and H. Karara. Direct linear transform from comparator coordinates

into object space coordinates. In Proceedings of the Symposium on Close-Range

Photogrammetry, volume 1, pages 1–18, 1971.

[2] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Building rome in

a day. In 2009 IEEE 12th international conference on computer vision (ICCV),

pages 72–79. IEEE, 2009.

[3] A. Akbarzadeh, J.-M. Frahm, P. Mordohai, B. Clipp, C. Engels, D. Gallup, P. Mer-

rell, M. Phelps, S. Sinha, B. Talton, et al. Towards urban 3D reconstruction from

video. In Third International Symposium on 3D Data Processing, Visualization,

and Transmission (3DPVT), pages 1–8. IEEE, 2006.

[4] P. Beardsley, P. Torr, and A. Zisserman. 3D model acquisition from extended

image sequences. In European conference on computer vision (ECCV), pages

683–695. Springer, 1996.

[5] F. Bernardini and H. Rushmeier. The 3D model acquisition pipeline. In Computer

graphics forum, volume 21, pages 149–172. Wiley Online Library, 2002.

[6] M. Bertero, T. A. Poggio, and V. Torre. Ill-posed problems in early vision. Pro-

ceedings of the IEEE, 76(8):869–889, 1988.

[7] A. Bhoi. Monocular depth estimation: A survey. arXiv preprint

arXiv:1901.09402, 2019.

[8] A. Cohen, C. Zach, S. N. Sinha, and M. Pollefeys. Discovering and exploiting 3D

symmetries in structure from motion. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1514–1521. IEEE, 2012.

[9] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban

scene understanding. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3213–3223, 2016.

[10] B. Curless. From range scans to 3D models. ACM SIGGRAPH, 33(4):38–41,

1999.

[11] F. Dellaert, S. M. Seitz, C. E. Thorpe, and S. Thrun. Structure from motion without

correspondence. In Proceedings IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR) (Cat. No. PR00662), volume 2, pages 557–564. IEEE,

2000.

[12] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image

using a multi-scale deep network. In Advances in Neural Information Processing

Systems, pages 2366–2374, 2014.

[13] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.-H.

Jen, E. Dunn, B. Clipp, S. Lazebnik, et al. Building rome on a cloudless day.

In European Conference on Computer Vision (ECCV), pages 368–381. Springer,

2010.

[14] R. Garg, V. K. BG, G. Carneiro, and I. Reid. Unsupervised cnn for single view

depth estimation: Geometry to the rescue. In European Conference on Computer

Vision (ECCV), pages 740–756. Springer, 2016.

[15] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the

kitti vision benchmark suite. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3354–3361. IEEE, 2012.

[16] C. Godard, O. Mac Aodha, and G. Brostow. Digging into self-supervised monoc-

ular depth estimation. arXiv preprint arXiv:1806.01260, 2019.

[17] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth

estimation with left-right consistency. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 270–279, 2017.

[18] C. Hane, C. Zach, A. Cohen, R. Angst, and M. Pollefeys. Joint 3D scene re-

construction and class segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 97–104, 2013.

[19] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In

Advances in Neural Information Processing Systems, pages 2017–2025, 2015.

[20] N. Kalra and S. M. Paddock. Driving to safety: How many miles of driving would

it take to demonstrate autonomous vehicle reliability? Transportation Research

Part A: Policy and Practice, 94:182–193, 2016.

[21] Z. Kim. Robust lane detection and tracking in challenging scenarios. 2008.

[22] A. Kundu, Y. Li, F. Dellaert, F. Li, and J. M. Rehg. Joint semantic segmenta-

tion and 3D reconstruction from monocular video. In European Conference on

Computer Vision (ECCV), pages 703–718. Springer, 2014.

[23] V. Lempitsky and Y. Boykov. Global optimization for shape fitting. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 1–8. IEEE,

2007.

[24] F. Liu, C. Shen, G. Lin, and I. Reid. Learning depth from single monocular images

using deep convolutional neural fields. IEEE transactions on pattern analysis and

machine intelligence, 38(10):2024–2039, 2015.

[25] R. Mohr, L. Quan, and F. Veillon. Relative 3D reconstruction using multiple uncal-

ibrated images. The International Journal of Robotics Research, 14(6):619–632,

1995.

[26] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp,

C. Engels, D. Gallup, S.-J. Kim, P. Merrell, et al. Detailed real-time urban 3D re-

construction from video. International Journal of Computer Vision, 78(2-3):143–

167, 2008.

[27] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point rendering system

for large meshes. In Proceedings of the 27th annual conference on Computer

graphics and interactive techniques, pages 343–352. ACM Press/Addison-Wesley

Publishing Co., 2000.

[28] A. Sankar. Interactive In-Situ Scene Capture on Mobile Devices. PhD thesis,

2018.

[29] S. Sengupta, E. Greveson, A. Shahrokni, and P. H. Torr. Urban 3D semantic

modelling using stereo vision. In 2013 IEEE International Conference on Robotics

and Automation, pages 580–585. IEEE, 2013.

[30] N. Shiode. 3D urban models: Recent developments in the digital modelling of

urban environments in three-dimensions. GeoJournal, 52(3):263–269, 2000.

[31] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring photo collec-

tions in 3D. In ACM transactions on graphics (TOG), volume 25, pages 835–846.

ACM, 2006.

[32] I. E. Sutherland. Sketchpad a man-machine graphical communication system.

Simulation, 2(5):R–3, 1964.

[33] L. University. Lecture 3: Camera calibration, DLT, SVD, 2013.

[34] G. Varma, A. Subramanian, A. Namboodiri, M. Chandraker, and C. Jawahar. Idd:

A dataset for exploring problems of autonomous navigation in unconstrained en-

vironments. In 2019 IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 1743–1751. IEEE, 2019.

[35] C. Wu. Towards linear-time incremental structure from motion. In 2013 Interna-

tional Conference on 3D Vision (3DV), pages 127–134. IEEE, 2013.

[36] E. Yares. 50 years of CAD, 2013.

[37] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for image restoration

with neural networks. IEEE Transactions on Computational Imaging, 3(1):47–57,

2017.

[38] S. Zhou, Y. Jiang, J. Xi, J. Gong, G. Xiong, and H. Chen. A novel lane detec-

tion based on geometrical model and gabor filter. In IEEE Intelligent Vehicles

Symposium, pages 59–64. IEEE, 2010.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	INTRODUCTION
	Our Contributions

	BACKGROUND
	3D Modeling and Sketchpad
	3D Scanning
	Reconstruction From Images

	DEPTH ESTIMATION OF MONOCULAR IMAGES
	Method
	Depth Estimation as Image Reconstruction
	Neural Network
	Loss Function

	Our Use and Results
	Discussion

	PERSPECTIVE CORRECTION
	Perspective Projection Geometry
	Pinhole Camera

	Perspective Correction
	Direct Linear Transform

	Discussion
	Monte Carlo Optimization
	Choice of Points for DLT

	3D Synthesis Pipeline
	Pipeline Description
	Dataset and Model
	Depth Estimation
	Perspective Inversion
	Model Loading

	Results
	Discussion

	CONCLUSIONS AND FUTURE WORK
	Future Work
	Summary

	Bibliography

