
A SEMI-AUTOMATED ALGORITHM FOR DATA
EXTRACTION FROM IMAGES OF BAR CHARTS
AND SCATTER PLOTS USING TENSOR FIELDS

Komal Dadhich

Master of Science by Research Thesis
June 2021

International Institute of Information Technology, Bangalore

A SEMI-AUTOMATED ALGORITHM FOR DATA

EXTRACTION FROM IMAGES OF BAR CHARTS

AND SCATTER PLOTS USING TENSOR FIELDS

Submitted to International Institute of Information Technology,
Bangalore

in Partial Fulfillment of
the Requirements for the Award of

Master of Science by Research

by

Komal Dadhich
MS2018007

International Institute of Information Technology, Bangalore
June 2021

Dedicated to my family

Thesis Certificate

This is to certify that the thesis titled A Semi-automated Algorithm for Data Ex-

traction from Images of Bar Charts and Scatter Plots Using Tensor Fields submit-

ted to the International Institute of Information Technology, Bangalore, for the award

of the degree of Master of Science by Research is a bona fide record of the research

work done by Komal Dadhich, MS2018007, under my supervision. The contents of

this thesis, in full or in parts, have not been submitted to any other Institute or Univer-

sity for the award of any degree or diploma.

Prof. Jaya Sreevalsan Nair

Bangalore,

The 4th of June, 2021.

iv

A SEMI-AUTOMATED ALGORITHM FOR DATA EXTRACTION FROM

IMAGES OF BAR CHARTS AND SCATTER PLOTS USING TENSOR FIELDS

Abstract

Statistical plots are some of the simplest yet effective visualizations as these plots

have been part of different stages of school education. Currently, they are used exten-

sively in academic curriculum, newspapers, digital platforms, and research articles in

image format. The most used chart types in the curriculum are bar charts, scatter plots,

line charts, and pie charts. Among them, bar charts are the most popular choice be-

cause of the availability of various representations such as grouped bar and stacked bar

for plotting as per data requirement. The chart images in published articles may interest

the user to explore more about the data as well as select a different visualization for ease

of understanding. In such a scenario, the unavailability of source data used to visualize

and create the chart image in focus comes out as a blocker in the analysis process. The

publications or articles are mostly converted to speech for visually impaired readers.

However, the existing systems are unable to provide or integrate similar information

from the chart images embedded in the documents.

The previous systems and models for chart analysis, interpretation, and data ex-

traction demonstrate the need for a generic system that can be used for various types

of charts. As an initial step towards a computational model for data extraction from

chart images, we introduce a semi-automated algorithm with components for chart type

classifier, tensor field computation, and rule-based data extraction. Our algorithm has

currently been completed for simple bar charts, histograms, and scatter plots. Our CNN-

based chart classification model identifies the chart-type and sub-type that determine the

v

extraction steps for the given chart image. We propose implementing local geometric

descriptors like structure tensor, tensor vote, and tensor voting field after anisotropic dif-

fusion to exploit the geometry of graphical objects such as bars/columns or points. The

clustering of critical points, filtered through the topological analysis of tensor fields,

shows the corners in bars/column and center in point/dot in scatter plots. These cor-

ners of bar/column in the bar chart and center of scatter point in scatter plots encode

the information in the source image and provide the pixel-based data value depicted by

individual chart object.

As a next step, we extend our algorithm by introducing additional components such

as a classifier to identify sub-type of a given bar chart image and chart annotation mod-

ule for data extraction from multi-series/multi-class bar chart and scatter plots. Our

data extraction component provides the data in pixel space for an input image and is

integrated with text detection and localization models to extract the final data.

Here, our scope lies in providing a system that given an image of a bar chart or

scatter plot, identifies the chart type and sub-type plotted in the image, and extracts the

data represented in the given image. In this thesis, we discuss the two important steps

of the algorithm for data extraction, namely, (i) chart classification and (ii) tensor field

computation. We demonstrate how our algorithm is extensible to complex forms of

a chart, e.g., from simple bar charts to grouped and stacked charts, from single-class

scatter plots to multi-class scatter plots. In this thesis, we address the challenges asso-

ciated with chart images, limitations, experiments with chart images covering different

formatting specifications, and discuss the future work that can improve the process.

vi

Acknowledgements

“My sincere gratitude to my advisor Prof. Jaya Sreevalsan Nair for her invaluable

advice, continuous encouragement and support. It has been my pleasure to work under

her guidance. I wish to express my sincere gratitude to the Machine Intelligence and

Robotics Center at IIIT-Bangalore for generous funding support. I would also like to

thank Ms. Reddy Rani Vangimalla for providing such a healthy working environment

and sharing her invaluable experience. Discussing with her was always fun and stress

relieving. I would also like to thank my lab mates Ms. Harshitha Ravindra and Ms.

Siri Chandana Daggubati for helping me and working with me. Last but not least, I

would like to thank my family for maintaining their belief and faith in me without which

completing this journey would not be possible.”

— Komal Dadhich

vii

List of Publications

1.1 J. Sreevalsan-Nair, K. Dadhich, and S. C. Daggubati, ”Tensor Fields for Data Ex-

traction from Chart Images: Bar Charts and Scatter Plots,” (to appear) in Topolog-

ical Methods in Visualization: Theory, Software and Applications, Ingrid Hotz,

Talha Bin Masood, Filip Sadlo, and Julien Tierny (Eds.). Springer-Verlag, 2020;

preprint at arXiv (2020), October 2020.

1.2 K. Dadhich, S. C. Daggubati, and J. Sreevalsan-Nair, “BarChartAnalyzer: Digi-

tizing Images of Bar Charts,” in the Proceedings of the International Conference

on Image Processing and Vision Engineering (IMPROVE 2021), pp 17–28, April

2021. https://doi.org/10.5220/0010408300170028

1.3 K. Dadhich, S. C. Daggubati, and J. Sreevalsan-Nair, ”ScatterPlotAnalyzer: Digi-

tizing Images of Charts Using Tensor-based Computational Model” (to appear)

in the Proceedings of the International Conference on Computational Science

(ICCS) 2021, June 2021.

viii

Contents

Abstract iv

Acknowledgements vi

List of Publications vii

List of Figures xii

List of Tables xx

List of Abbreviations xxi

1 Introduction 1

1.1 Problem Statement . 7

1.2 Contributions . 9

1.3 Thesis Structure . 10

2 Literature Survey 11

2.1 Chart Interpretation . 11

ix

2.2 Chart Classification . 12

2.3 Data Extraction . 13

2.4 Tensor Field Analysis . 14

3 Tensor Voting for Chart Images 16

3.1 Structure Tensor . 17

3.2 Tensor Voting . 18

3.3 Anisotropic Diffusion . 19

3.4 Saliency Map Computation . 20

3.5 DBSCAN Clustering . 21

3.6 Data Extraction . 22

3.7 Our Proposed Algorithm . 23

3.8 Error Analysis for Data Extraction . 23

3.9 Visual Analysis of Tensor Fields . 25

3.9.1 Dot Plot with Color-map for Saliency Value 26

3.9.2 Tensor Glyph Visualization . 26

3.9.3 Dot Plot for Degenerate Point Visualization 26

3.10 Experiments . 29

3.10.1 Results . 29

3.10.1.1 Tensor Field Analysis 30

x

3.10.1.2 Data Extraction . 32

3.10.1.3 Error Analysis . 32

4 Chart Image Classification and Annotation 38

4.1 Chart Type Classification . 39

4.1.1 Dataset for Type Classification 40

4.1.1.1 Preprocessing . 41

4.1.1.2 Image labelling . 41

4.1.2 Inception Model . 42

4.1.2.1 Architecture . 43

4.1.3 Limitations of Pre-trained Models 43

4.2 VGGNet Classifier . 45

4.2.1 Architecture . 46

4.3 Chart Sub-type Classification . 48

4.3.1 Dataset . 49

4.4 Chart Annotation . 49

4.5 Experiments . 51

5 Multi-class and Multi-series Charts 53

5.1 Grouped Bar Chart . 54

5.2 Stacked Bar Chart . 55

xi

5.3 Multi-class Scatter Plot . 55

5.4 Data Extraction . 55

5.4.1 Legend Mapping . 57

5.5 Experiments . 57

5.5.1 Results . 58

6 Discussion 67

6.1 Object Geometry . 67

6.2 Border Thickness . 68

6.3 Color Space . 69

6.4 Limitations . 70

7 Conclusions 73

7.1 Future Work . 74

Bibliography 75

xii

List of Figures

FC1.1 Various charts introduced at different levels in a school curriculum. . . 2

FC1.2 Data extraction in pixel space from an image of a grouped bar chart

using our method, for chart reconstruction and chart redesign. The in-

put image is from a Grade-8 mathematics textbook. (Source: NCERT

http://ncert.nic.in/textbook/textbook.htm). 5

FC1.3 Various components of chart image highlighted in bounding boxes.

(A) Chart components such as xy labels, title, and legend etc., (B)

Chart objects such as bars/columns in this image, (C) Chart Canvas

excluding legend, (D) The region inside bounding box is known as

object interior, pixels outside this bounding box create object boundary. 6

FC1.4 Summary of the problem statement. We perform image classification

and tensor field analysis on chart images and extract data associated

with the given image. 7

http://ncert.nic.in/textbook/textbook.htm

xiii

FC3.1 The tensor fields computed from images of charts using our approach.

(A) Input images of bar chart, scatter plot and histograms. Tensor

fields computed on the images, visualized using glyphs and colored

by saliency values, include (B) structure tensor Ts, and (C) tensor vot-

ing field of Ts after anisotropic diffusion Tv-ad. (D) The saliency values

of Tv-ad visualized using dot plots. The coolwarm color mapping as-

sociated with corresponding Cl and Cp saliency values, used in the

visualizations, is shown in the colorbar. 27

FC3.2 Use of degenerate points in Tv-ad field for data extraction from chart

images, and validated using chart reconstruction. (A) Input images of

bar chart, scatter plot and histogram. (B) Visualization of the pixels

corresponding to degenerate points based on Cl and Cp values of Tv-ad

at the corners of bar/bin for and near the center of scatterpoint, (C)

The reconstructed charts from the extracted data for the input images. 28

FC3.3 The tensor fields computed from images of charts using our approach.

(A) Input images of different variants of simple bar chart. Tensor

fields computed on the images, visualized using glyphs and colored

by saliency values, include (B) structure tensor Ts, and (C) tensor vot-

ing field of Ts after anisotropic diffusion Tv-ad. (D) The saliency values

of Tv-ad visualized using dot plots. The coolwarm color mapping as-

sociated with corresponding Cl and Cp saliency values, used in the

visualizations, is shown in the colorbar. 30

xiv

FC3.4 The tensor fields computed from images of charts using our approach.

(A) Input images of different variants of simple scatter plots. Tensor

fields computed on the images, visualized using glyphs and colored

by saliency values, include (B) structure tensor Ts, and (C) tensor vot-

ing field of Ts after anisotropic diffusion Tv-ad. (D) The saliency values

of Tv-ad visualized using dot plots. The coolwarm color mapping as-

sociated with corresponding Cl and Cp saliency values, used in the

visualizations, is shown in the colorbar. 31

FC3.5 The tensor fields computed from images of charts using our approach.

(A) Input images of different variants of simple histograms. Tensor

fields computed on the images, visualized using glyphs and colored

by saliency values, include (B) structure tensor Ts, and (C) tensor vot-

ing field of Ts after anisotropic diffusion Tv-ad. (D) The saliency values

of Tv-ad visualized using dot plots. The coolwarm color mapping as-

sociated with corresponding Cl and Cp saliency values, used in the

visualizations, is shown in the colorbar. 33

FC3.6 Use of degenerate points in Tv-ad field for data extraction from images

of bar charts, and validated using chart reconstruction. (A) Input im-

ages of different variants of simple bar chart. (B) Visualization of the

pixels corresponding to degenerate points based on Cl and Cp values

of Tv-ad at the corners of bar/bin for and near the center of scatterpoint,

(C) The reconstructed charts from the extracted data for the input im-

ages. 34

xv

FC3.7 Use of degenerate points in Tv-ad field for data extraction from images

of scatter plots, and validated using chart reconstruction. (A) Input

images of different variants of simple scatter plot. (B) Visualization

of the pixels corresponding to degenerate points based on Cl and Cp

values of Tv-ad at the corners of bar/bin for and near the center of

scatterpoint, (C) The reconstructed charts from the extracted data for

the input images, with red ellipses indicating omission errors. 35

FC3.8 Use of degenerate points in Tv-ad field for data extraction from images

of histograms, and validated using chart reconstruction. (A) Input im-

ages of different variants of histograms. (B) Visualization of the pixels

corresponding to degenerate points based on Cl and Cp values of Tv-ad

at the corners of bar/bin for and near the center of scatterpoint, (C)

The reconstructed charts from the extracted data for the input images,

with red ellipses indicating omission errors. 36

FC4.1 Basic chart types introduced for chart graphicacy at the primary edu-

cation level. 39

FC4.2 Training dataset and directory structure 42

FC4.3 Naive Inception module described by Szegedy et al. [1]. 44

FC4.4 GoogleNet Architecture described by Szegedy et al. [1]. The stem,

marked by the orange box, performs preliminary convolutions. The

auxiliary classifiers are marked by purple boxes, and the remaining

structures are inception modules. 44

xvi

FC4.5 Our VGGNet inspired classification model with convolutional layers

stacked along with max-pooling layers with tailing fully connected

layers shown in LeNet style. Our model has total of 10 layers with 2

convolutional layers before each pooling layers similar to VGG13 [2]

architecture with filters (3x3) and (5x5). 46

FC4.6 Examples of different sub-types of the bar chart with horizontal and

vertical orientation. 48

FC4.7 Image annotation on an image of bar chart using LabelImg tool to

locate chart components in the given image. 50

FC4.8 Bar charts drawn with different design formats, that fail with either

our chart classifier or our data extraction algorithm. 51

FC5.1 Examples of multi-series/multi-class bar chart and scatter plot. 53

FC5.2 The tensor fields computed from images of charts using our approach.

(A) Input images of multi-series bar charts. Tensor fields computed

on the images, visualized using glyphs and colored by saliency val-

ues, include (B) structure tensor Ts, and (C) tensor voting field of Ts

after anisotropic diffusion Tv-ad. (D) The saliency values of Tv-ad visu-

alized using dot plots. The coolwarm color mapping associated with

corresponding Cl and Cp saliency values, used in the visualizations, is

shown in the colorbar. 59

xvii

FC5.3 The tensor fields computed from images of charts using our approach.

(A) Input images of multi-class scatter plots. Tensor fields computed

on the images, visualized using glyphs and colored by saliency val-

ues, include (B) structure tensor Ts, and (C) tensor voting field of Ts

after anisotropic diffusion Tv-ad. (D) The saliency values of Tv-ad visu-

alized using dot plots. The coolwarm color mapping associated with

corresponding Cl and Cp saliency values, used in the visualizations, is

shown in the colorbar. 60

FC5.4 Use of degenerate points in Tv-ad field for data extraction from im-

ages of multi-series bar charts, and validated using chart reconstruc-

tion. (A) Input images of charts. (B) Visualization of the pixels cor-

responding to degenerate points based on Cl and Cp values of Tv-ad at

the corners of bar/bin for and near the center of scatterpoint, (C) The

reconstructed charts from the extracted data for the input images. . . . 61

FC5.5 Reconstruction of synthetically generated bar chart images with their

error evaluation in normalized mean absolute error (nMAE) and mean

absolute percentage error (MAPE). 62

FC5.6 Use of degenerate points in Tv-ad field for data extraction from im-

ages of multi-class scatter plots, and validated using chart reconstruc-

tion. (A) Input images of charts. (B) Visualization of the pixels cor-

responding to degenerate points based on Cl and Cp values of Tv-ad at

the corners of bar/bin for and near the center of scatterpoint, (C) The

reconstructed charts from the extracted data for the input images. . . . 63

xviii

FC5.7 The tensor field computation steps for scatter plot images downloaded

from internet (A) Input images of scatter plots. (B) Visualization

of the pixels corresponding to degenerate points based on Cl and Cp

values of Tv-ad near the center of scatterpoint, (C) The reconstructed

charts from the extracted data for the input images. 64

FC5.8 Correlation coefficient (r) values in both original and reconstructed

images of simple scatter plots. 65

FC5.9 Correlation coefficient (r) values in both original and reconstructed

images of multi-class scatter plots. 66

FC6.1 The impact of border of bins in histograms, and scatter point (glyph)

size and shape in scatter plots in our tensor field computation. We

consider the following cases of histograms: (left) with the border and

(middle) without the border on bins in a histogram; and (right) differ-

ent glyph shapes and sizes used in scatter plots. The source images

are in (A), and the saliency map visualization of the tensor field Tv-ad

is in (B). The coolwarm color mapping associated with correspond-

ing Cl and Cp saliency values, used in the visualizations, is shown in

the colorbar. 68

FC6.2 The impact of border of bars in bar charts in our tensor field compu-

tation. We consider the following cases of bar charts: (left) with the

border and (right) without the border on the bars. The source images

are in (A), and the saliency map visualization of the tensor field Tv-ad

is in (B). The coolwarm color mapping associated with correspond-

ing Cl and Cp saliency values, used in the visualizations, is shown in

the colorbar. 69

xix

FC6.3 The impact of color model in our tensor field computation. We con-

sider the following cases of color image of grouped bar chart with

color models: (left) RGB, and (right) CIELAB. (A) Input images of

different variants of simple scatter plots. Tensor fields computed on

the images, visualized using glyphs and colored by saliency values,

include (B) structure tensor Ts, and (C) tensor voting field of Ts after

anisotropic diffusion Tv-ad. (D) The saliency values of Tv-ad visual-

ized using dot plots. The coolwarm color mapping associated with

corresponding Cl and Cp saliency values, used in the visualizations, is

shown in the colorbar. 71

xx

List of Tables

TC3.1 Error computation using Earth Mover’s Distance of distributions of

normalized values of original data and reconstructed data belonging

to original and reconstructed images, respectively. dEMD > 0.10, in

boldface, can be considered relatively high. 37

xxi

List of Abbreviations

DBSCAN Density-Based Spatial Clustering of Applications with Noise

CNN Convolutional Neural Network

OCR Optical Character Recognition

ST Structure Tensor

TV Tensor Vote

TVAD Tensor Voting Field after Anisotropic Diffusion

2D Two Dimensional

3D Three Dimensional

1

CHAPTER 1

INTRODUCTION

“Use a picture. It’s worth a thousand words.” As Arthur Brisbane suggested, visual-

ization simplifies complex data sets to highlight the important aspects—numerical pat-

terns, trends, distributions, and other more abstract insights. Charts are one of the most

comprehensible depictions of data typically found in documents, images, magazines,

and articles, hence becoming the most widely used visualization method to illustrate

data and associated trends. Charts, as part of graphical literacy, are important methods

to develop and improve statistical understanding. The visualizations using charts of var-

ious types, also known as statistical plots, are among the most prevalent ways to explore,

analyze, and describe the large pool of data, increasing day by day. Thus, graph/chart

comprehension has become part of the academic curriculum at various levels.

Different levels of complexity are introduced across different grades in the school

curriculum to enable students to interpret charts of different types, requirements, and

difficulties. Some of the chart types are shown in Figure FC1.1. Bar charts and scatter

plots become the most frequently used representation for data analysis and are available

in textbooks, newspapers, and on the internet for data representation, as these chart

types are taught at the school level. A Japanese educator, Kimura, had suggested a

six-level scheme for the statistical ability of understanding charts [3] that describes the

ability to comprehend graphs with the help of six levels starting from basic level-A with

2

(a) Scatter plot (b) Bar chart (c) Line chart

(d) Pie chart (e) Histogram (f) Distribution plot

Figure FC1.1: Various charts introduced at different levels in a school curriculum.

four sub-levels (A1-A4) to the advanced level-F. The chart understanding associated

with each level starts from basic chart reading with sub-level A and reaches level-F,

which points to a person’s ability to use information depicted by charts to make new

inferences from given information.

The choice of chart type for visualizing a given dataset is based on the simplic-

ity of design for easy comprehension and non-cluttered visual encoding. However,

chart comprehension in the initial learning stage, specifically in the case of multi-series

charts, can be intimidating for students considering the wide variety of charts available

across the curriculum. For example, a grouped bar chart can be challenging to decode

due to the number of groups depicted in charts, color scheme selected for group repre-

sentation, etc. However, these charts can be better understood when redesigned. This

brings forth the gap in today’s technology in automated chart reading, which can further

be improvised for the redesign.

Building automated tools for chart reading is fraught with several limitations. One

such is the unavailability of data for building machine learning systems for charts im-

ages. Let’s take the example of such technology to aid graphicacy for visually impaired

students. Although screen readers have provided an assistive approach using text-to-

3

speech conversion, these applications do not provide any narrative for images included

in the documents. For such applications, the lack of availability of data is a limitation

for using machine learning approaches. Dataset creation for training such models is

also complex owing to the large design space for chart image creation, which includes

chart formats, layouts, styles, text formats, etc.

Data extraction is one of the key processes in an automated tool for chart reading

that infers knowledge from the data extracted from chart images. The data extraction

process in itself is important for building assistive devices and learning aids for reading

charts. The extracted data can be presented in the required format, i.e., braille or excel

sheets, needed for the creation of tactile diagrams, used widely by visually impaired

people to learn by touch sense. The manual process of tactile diagram creation for each

chart given in the textbook is a time-consuming and expensive process, as it requires

user interaction to create the image in the required format before it can be converted into

a tactile diagram. Hence, automating data extraction from chart images is an important

problem to study.

The state-of-the-art in automating data extraction from chart images, or question-

answer systems with chart images, involves image processing using handcrafted fea-

tures or machine learning approaches. The machine learning approach is data-dependent

and does not work for certain cases like stacked bar chart digitization and small image

corpus for training, as mentioned in ChartSense [4]. We consider using handcrafted

features to understand the nature of these images, with a scope of using our learnings in

building appropriate machine learning approaches in the future. Our tensor field com-

putation allows us to exploit geometrical attributes of chart objects and helps in locating

them in image space. The tensor field computation is performed at pixel level and hence

is impacted by image quality as well. Hence, we want to extend our tensor field analysis

in integration with any deep learning based object detection model to locate chart ob-

jects effectively in the future. Our tensor field can be used as a next step to identify the

4

junctions in stacked bars located by object detection models. Graphical perception is

about human understanding of a given chart with minimal interaction, i.e., visualizing

the data enables inferring knowledge from it. This perceptual understanding helps the

user to have a rough idea about features of data to make future inferences like trends

and summary. Chart perception is view-dependent as it follows the path of YOLO (You

Only Look Once); hence, the exploration and summarization processes using visualiza-

tion leave gaps in graphicacy for visually impaired students. Charts predominantly use

geometry and color for visual encoding a given dataset so that a user can capture with

a view of the chart only. Local features of color, geometry, and location extracted from

the image of a chart play a key role in chart reading. Hence, these features play a key

role in automated systems for chart reading.

In our work, we exploit local geometric features for data extraction from chart im-

ages. Let us look at the working of our proposed algorithm for data extraction for a

relatively complex chart, say, a grouped bar chart. The grouped bar chart is useful to

get inter-class and intra-class information in a single chart. However, for a user with

limitations in using such charts, e.g., dyslexic learners, the graphical information has

to be provided using simpler components. The redesigning of complex or multi-series

charts requires source data that is used to generate the original chart as well as infor-

mation about the classes/groups being represented in the image. A field study among

different students from different middle and secondary school grades magnifies the ap-

proach of solving a complex visual problem by dividing it into simpler problems. Our

data extraction approach can work as a primary step for reconstruction or re-plotting the

data differently, as shown in Figure FC1.2, where a grouped bar chart can be redesigned

as two simple bar charts or as scatter plots with the help of extracted data.

Our algorithm involves several tasks to accomplish data extraction, such as iden-

tifying the chart type and component annotation. A chart image is a combination of

different components with specific functionality and location within the chart. The im-

5

(i) Simple Bar Chart (ii) Scatter Plot

(d) Redesigned Plots (c) Reconstructed Plot

(b) Extracted Data
in Pixel Space(a) Extracted Chart Canvas

Image Scanned from a Textbook

Chart
Canvas

Figure FC1.2: Data extraction in pixel space from an image of a grouped bar chart using our
method, for chart reconstruction and chart redesign. The input image is from a Grade-8 mathe-
matics textbook. (Source: NCERT http://ncert.nic.in/textbook/textbook.htm).

portant components include axes, labels, legends, and chart objects. The interpretation

of a given image depends on extracting these components and contextualizing them,

e.g., providing a value with specific physical units to the height of the bar. The chart

objects play a significant role in chart understanding, which is supported by other com-

ponents. Text in the form of labels and titles in the chart and its legend is important for

contextualization.

Here, we define different components as shown in Figure FC1.3, including the chart

objects, to formalize the inputs to our proposed algorithm.

Definition 1.1. Chart Objects: The graphical objects or marks in the chart represen-

tation that encode the data are called chart objects. Chart objects are objects with non-

geometric/geometric shapes, e.g., bars/columns in a bar chart and a scatterpoint in a

scatter plot.

Definition 1.2. Chart Components: The chart components are regions in the charts

based on their location and roles. They include x- and y-axes that set the reference lines

in two-dimensional space, x- and y-labels that provide the values being represented by

http://ncert.nic.in/textbook/textbook.htm

6

A

A A

A

B

C

D

Figure FC1.3: Various components of chart image highlighted in bounding boxes. (A) Chart
components such as xy labels, title, and legend etc., (B) Chart objects such as bars/columns in
this image, (C) Chart Canvas excluding legend, (D) The region inside bounding box is known
as object interior, pixels outside this bounding box create object boundary.

the chart, title for both chart as well as axes, a legend used for multi-series/multi-class

charts. The title and legend provide meta-information of context and groups in charts.

Definition 1.3. Chart Canvas: The chart canvas is a region of the image of a chart that

contains only chart objects, such as bars or scatterpoints.

Definition 1.4. Object Boundary: Object boundary is created by the pixels for which

the immediate 8-connected neighborhood contains neighboring pixels that do not be-

long to the chart object.

Definition 1.5. Object Interior: Object interior is a collection of pixels that have

neighbors belonging to chart object.

7

1.1 Problem Statement

Data extraction from images of charts supports the automation of chart interpreta-

tion. This kind of chart interpretation process can be rightly called chart digitization.

Chart digitization from images consists of four stages, namely, chart classification, text

extraction, object detection, and data extraction [5]. Our primary goal is to create a

system that takes a chart image as an input, labels the input image based on chart-type

and sub-type, and extracts the data being represented in the chart image, as shown in

Figure FC1.4 for the bar chart and its sub-types specifically.

Chart Image

Image Annotation Text Detection
and Recognition

CNN
Classification

Canvas Extraction Tensor Field Computation
and Corner Detection

Of bar chart type

Not of bar chart type

Data Extraction (as Table)

Chart Reconstruction/
Redesign

Figure FC1.4: Summary of the problem statement. We perform image classification and tensor
field analysis on chart images and extract data associated with the given image.

We use image format over other forms of input representations of charts because of

the wide availability of chart images in documents and on the internet. Our objective is

to address the following problems:

• Classify the input image based on the chart types used for visualization.

– The vast design space, including the variety of charts, makes them amenable

to summarize the data for a broad spectrum of user requirements. Different

chart visualizations entail different steps in visually depicting data. Hence,

reverse engineering for data extraction from these chart types would require

8

an understanding of the primary steps that had been used for chart plotting in

the first place. Even within a chart type, a different representation is needed

for uni-, bi-, and multi-variate data; hence, the understanding of chart sub-

type is also needed.

• Implement a pixel-based method like tensor field computation and analysis for

data extraction from a raster image.

– The recent attempts at chart interpretation and digitization have implemented

machine learning methods to locate and identify chart objects that encode

the values visualized in the image. As the datasets for such detection and

localization models need to be large to train the model efficiently, we explore

the traditional image processing techniques for our goal. Charts inherently

have mathematical structures in their visualizations that can be exploited in

reducing the requirement of large training sets.

• Improve the genericity of the chart digitization algorithm for different chart types.

– Chart types and steps associated with decoding, once identified, build an al-

gorithm for chart digitization. Such an algorithm has the goal of automating

sub-levels of Level-A of statistical ability, as described by Kimura. The sub-

levels A1 corresponds to the basic reading of chart image using the title, unit,

and values, and the sub-level A2, to the reading of key features, e.g., min-

imum and maximum values, value differences, etc. It is straightforward to

tackle one chart type at a time. However, there is value in exploiting common

features in different chart types to improve the genericity of our algorithm.

The purpose of this thesis is to explore and analyze diverse methods that have been

implemented for chart digitization and introduce our approach as an alternative and

equally efficient solution. We deal with chart images with visualizations such as bar,

scatter plots for uni-, bi- and multi-variate data.

9

1.2 Contributions

We propose an algorithm that, for a given chart image, provides a label for image

classification, and further for predetermined chart types, proceeds to image annotation,

and tensor field generation and analysis for data extraction. Image annotation is required

for canvas extraction and chart component labeling.

• The novelty of our work lies in the exploitation of geometry of chart objects by

using local geometric descriptors such as structure tensor and tensor voting to

extract features like the corners of bars.

• We visualize different local geometric descriptors as well as saliency values to fix

parameters for clustering salient pixels. Thus, our algorithm is semi-automated,

with minimal user interaction.

• We focus on two types of charts, namely, bar charts and scatter plots. We also

consider histograms as a special case of bar charts. Our experiments cover uni-

and bi-variate data representation. The choice of charts is towards improving the

genericity of our algorithm.

• As these charts are available as colored images, we have experimented with dif-

ferent color models such as RGB and CIE-Lab to analyze the impact of the color

model on our computation model.

• We discuss different deep learning models used for chart classification along with

the complexities and limitations associated with them. We introduce our classifi-

cation model for identifying chart type and sub-type for a given image.

• We annotate a collection of chart images to create a dataset that can be used as

a training dataset for object detection models based on deep learning. This can

10

improve the automation for canvas extraction task or the entire chart digitization

process.

• We identify different applications where our chart digitization algorithm fits as a

module, e.g., assistive solutions to a selected audience.

• Our work also discusses the limitation associated with the chart digitization pro-

cess and our findings of specific bottlenecks.

1.3 Thesis Structure

The thesis structure is as follows: in Chapter 2, we provide a literature survey on

chart analysis and digitization, emphasizing the variety of implementations and their

corresponding limitations. In Chapter 3, we discuss our algorithm for data extraction

from chart images using tensor field analysis along with the experiments made. In

Chapter 4, we elucidate our classification models and annotation steps. Chapter 5 fo-

cuses on complex charts for multi-series or multi-variate data, such as grouped bar,

stacked bar, and multi-class scatter plots and our experiments. In Chapter 6, we discuss

the factors influencing our method, e.g., shape and size of different chart objects, color

model, etc. We also address the limitations of our method, demonstrated by cases with

poor results. In Chapter 7, we conclude the thesis with the potential applications of our

work, with a note on complete systems that can use our algorithm as a module and the

scope of future work towards improving our algorithm.

11

CHAPTER 2

LITERATURE SURVEY

The six-level scheme by Kimura suggests the ability to understand and comprehend

details from charts at various stages. We target to develop a workflow that can meet

sub-levels of level-A of Kimura’s statistical ability scheme, i.e., basic reading and ex-

traction of key features. Chart interpretation and analysis is an interesting problem that

has been explored by various implementations. In this chapter, we analyze previous at-

tempts in this domain and identify the limitations along with the tasks to be performed

for chart digitization and analysis. Chart analysis consists of smaller tasks, such as chart

type classification, data extraction, and reconstruction or re-design if required. In this

chapter, we discuss the relevant paths followed to introduce a chart interpreting system.

2.1 Chart Interpretation

Chart interpretation has been studied extensively in cognitive science [6] and doc-

ument engineering [7] domains. The findings in [7] continue to be extensively used

in separating text and graphics in charts using Optical Character Recognition (OCR)

techniques [5, 8]. Our literature survey in the cognitive science domain has provided

information about the constructs used in charts that have helped in our current work.

The guiding principles in cognitive science provided by Hegarty [6] refer to features we

have developed using local structure descriptors. The importance of the proximity of

12

objects supports the use of spatial locality-based approaches, specifically for the scatter

plot [9]. Bar charts and other charts have demonstrated properties of integral, configu-

ral, and separable/object displays depending on the mapping of the variable [10]. The

information integration using bar charts has been found more useful [11]. While there

have been several studies done in chart interpretation in parts, or whole for few chart

types, there is still a gap in standardized and generalized methods for chart interpreta-

tion, which will work for more than one type of chart [12].

In our work, we detect corners in bars and histogram, based on spatial proximity, as

these corner pixels are important in providing the height of the bar or bin, respectively,

and consequently, for data extraction. Similarly, we extend the use of local geometric

descriptors such as tensor fields to locate scatterpoints in image space.

2.2 Chart Classification

Visualization of data is an effective way of seeing the trends represented in data.

Charts are a universally accepted form of visualization that has been discussed in the

academic curriculum. Hence, charts are also the most frequently used visualization

form due to their familiarity. The selection of chart type for visualizing the data is de-

pendent on the data attributes and trends we want to showcase in the final chart. As dif-

ferent chart types will plot the data differently and may highlight different points of data,

chart comprehension is highly dependent on the chart type selected for the visualiza-

tion. Similar to chart analysis, data extraction steps for a given chart image are specific

to the chart type. ReVision is one of the earlier works that introduced the idea of using

feature vectors and geometric structures to extract visual elements and data encoded in

the chart [13]. ReVision performed text type classification using feature vector gener-

ated using the geometric property of text along with mark type/chart type classification

using a fine-tuned AlexNet. Image classification has been a highly explored problem in

13

computer vision; hence, many machine learning models have been introduced for chart

classification as well. A web-based system Beagle classifies charts images in scalable

vector graphics format [14]. In another study, the AlexNet classifier has been fine-tuned

to take a bitmap image and classify it based on the estimated mark type [8]. Follow-

ing the same approach of using a pre-trained model for chart classification, ChartSense

uses GoogleNet to identify chart type from categories line, bar, pie, scatter plot charts,

map, and table types, specifically [4] and addresses a limitation in digitizing stacked

bar charts. The same fine-tuning approach is applied in FigureSeer [15], which is an

end-to-end framework for the summarization of line charts exclusively.

In our work, we use a convolutional neural network based classifier to identify the

chart type represented in the given image. We further classify the bar charts based on

the sub-types such as simple, grouped and, stacked bar charts.

2.3 Data Extraction

In WebPlotDigitizer, the user is provided with an option to use the automated or

manual procedure for data extraction from the given chart image [16]. The tool requires

the user to select the chart type for the uploaded image from a given list, align the

axis and mask the chart component by drawing multiple points on the graphical object.

The data extraction process fails to get group/sub-group information from grouped and

stacked bar charts. Similar to WebPlotDigitizer, Scatterscanner requires user interactiv-

ity for data extraction [17]. However, the scope of this system is limited to scatter plots.

Scatteract is an automated system that extracts data from scatter plot images by map-

ping pixels to the coordinate system of the chart with the help of OCR [18]. ReVision

uses chart layouts for bar and pie charts for pixel-based data extraction [13]. Choi et

al. [5] have used different approaches for data extraction from bar charts, pie charts, and

line charts. A Darknet neural network as an object detection model in combination with

14

OCR for text detection is used from bar charts. The proportion of pixels belonging to

color within the periphery of the circle is utilized for pie charts. Automated data extrac-

tion for bar charts has been done by identifying graphical components and text regions

independently [19]. Their system extracts the chart data using inference. ChartSense

detects bars using the connected component method with the x-axis and extracts data

effectively for simple bar charts [4]. However, the system provides incorrect results for

multi-series bar charts (e.g., grouped bars) and does not extract data from stacked bar

charts. PlotQA is used as an analysis tool for reasoning over scientific plots that uses a

more accurate neural network for object detection for visual elements, such as bars [20].

However, the manual creation of bounding boxes does not extend to complex bar charts

in a straightforward manner. The existing methods that use object detection methods

to locate bars and to extract data have not considered one category of bar chart, i.e.,

stacked bar. Data extraction from a stacked bar chart differs from the extraction from

simple as well as grouped bar charts. Also, data extraction using the machine learning

based object detection model depends on locating the bar object in the image; how-

ever, in a stacked bar chart, the bar junctions denoting the stack of each class/series are

important to extract the data.

Hence, we refer to hand-crafted features based on image processing techniques such

as tensor field analysis to locate bars as well as stack height in bar chart images.

2.4 Tensor Field Analysis

Extraction of perceptual information from point clouds has been performed using

tensor voting [21]. Moreno et al. [22] have proposed the use of tensor voting for struc-

ture estimation from a variety of images. Their work also explains the similarities

between tensor voting and structure tensor and extends tensor voting for grey-scale,

vector- and tensor-valued images. The closed-form solution of the tensor voting com-

15

putation for n-dimensional data using a structure-aware tensor [23] helps in direct and

efficient computation. The closed-form solution is different from the conventional one,

where components like stick-, plate- and ball-voting for the tensor field are computed

separately. The closed-form solution also allows any second-order symmetric tensor as

a starting tensor for gathering votes, thus making the methodology more generic and

functional in implementation.

We, thus, extend tensor field computation and analysis to locate and cluster degen-

erate points in 2D images of charts. The clusters of centroids allow us to locate scatter-

points as well as provide information on bar heights in pixel space. We further map this

pixel space data to original data dimension/units using OCR. Our work would be the

closest to the use of the Hough transform in image space to recognize bar charts [24] in

the context of deriving features in image space and finding generic patterns.

16

CHAPTER 3

TENSOR VOTING FOR CHART IMAGES

Chart analysis is a step-by-step process that also includes locating chart objects in

the given image to decode the information. Object detection models locate the chart

objects such as bars and scatter points but limits in identifying division in stacked bars.

Here, we try to understand graphical perception, which highlights the importance of

chart objects as the user tends to look at these objects as the first step towards chart

analysis. In cognitive science, the perceptual understanding of charts requires global

properties of the chart to be processed before local properties such as color or geometry

of chart objects [25]. However, using local attributes to compute global features is more

efficient [26]. The visual understanding of the chart uses the spatial proximity of chart

objects to understand relative features as well as exact values. Hence, Spatial proxim-

ity, in particular, is important in charts of our interests, as the closeness in pixels of

geometric objects, such as bars and scatterpoints, helps in extracting data and in mak-

ing comparisons and trend inferences. Integrated tasks involve information integration,

including object integration [11]. Since local geometry plays a significant role in the

chart analysis as given by the PCP (Proximity Compatibility Principle), our proposed

tensor field representation is for the chart canvas alone. Here, the chart canvas is the

plot itself, after stripping off the axes and textual information, which are predominantly

contextual and geometrical, to a lesser extent. We target to introduce a computational

model for data extraction from images of bar charts, scatter plots, and histograms.

17

Differential-based features are widely implemented for tasks like edge detection,

corner detection, shape analysis, and feature tracking. We use local geometric descrip-

tors in the form of positive semi-definite second-order tensor fields like structure tensor

and tensor voting that determines geometric information of objects and global percep-

tual information by collecting votes at each entity based on the normal tensors of its

local neighbors. It is efficient for tasks such as Image Segmentation, completion, and

reconstruction, where global context plays an important role. The votes at each entity

are collected using different components, stick-, plate-, and ball-tensors, in 3D data,

and stick- and ball-tensors in 2D. Tensor votes are widely used to capture perceptual

information in natural images. Our aim is to implement tensor voting to get insight

from a given chart image, such as the position of chart objects and trends followed by

the encodings represented in the chart image.

The location and shape of chart objects in the image encode the information being

represented in chart form. For bar chart representation, corners of bars can help us to

detect the location and height of the individual bar. Similarly, a scatter plot encodes

data, with each scatterpoint representing the information at its center. We want to ex-

ploit the geometric and spatial properties of charts to get these encodings and use local

geometric descriptors such as structure tensor and tensor voting to detect corner points.

Tensors are mathematical structures/objects defined by dimension and order.

3.1 Structure Tensor

Structure tensor Ts is an outer product of the gradient vector, and it stores infor-

mation of the direction of the gradient of the local neighborhood. Although structure

tensor is applicable to higher-dimensional domains, its application in the image pro-

cessing/computer vision domains is highly appreciated.

Ts is computed from the gradient tensor, Tg = GT G, using the gradient vector, G =

18

[
∂ I
∂x

∂ I
∂y

]
, at a pixel with the intensity I. We use the sobel operator to compute gradient

vector in images and apply Gaussian function with zero mean and standard deviation ρ .

Ts = Gρ ∗Tg (Eqn 3.1)

where ∗ is a 2D convolution operator, in the case of 2D images.

We take each individual channel representing the given RGB image and normalize

the values in the range [0,1] by dividing the intensity values by 255.0 for our 2D chart

images. The normal intensity values are forwarded for derivative computation using a

sobel operator that gives gradients across x and y directions. The xy-directional gra-

dients generate structure tensor Ts and are convolved using Gaussian function with a

standard deviation value of 0.1. Visualization of eigenvectors received post eigenvalue

decomposition on this local geometric descriptor highlights the direction of the gradi-

ent.

3.2 Tensor Voting

Tensor voting is a process of collecting votes at each entity, i.e., each pixel in case

of 2D images, based on normal tensors of its neighbors. It has been implemented for

extracting perceptual information from point cloud, particularly in 3D [21]. The method

determines the likelihood of a point/pixel belonging to a surface, a curve, a junction,

or an outlier. The voting tensor determines the global perceptual organization of an

object [27]. The traditional implementation of tensor voting depends on the aggregation

of stick-, plate- and ball- tensors in 3D data and stick- and ball-tensors in 2D data.

Wu et al. [23] have proposed a closed-form solution for tensor voting computation

based on the structure-aware tensor. Here, a structure-aware tensor captures details such

as surface, junctions, or curves in the case of 3D data. The visualization of structure-

19

aware tensor using ellipse or ellipsoid for 2D and 3D data respectively elaborates on

tensor being a surface, plate, or ball type. The closed-Form solution calculates tensor

vote at xi induced by K j located at x j in d-dimensional space as:

Si j = ci jRi jK jR′i j, (Eqn 3.2)

where Ri j = (Id−2ri jrT
i j); R′i j = (Id− 1

2ri jrT
i j)Ri j

Id is the d-dimensional identity matrix and direction vector ri j = d̂i j, where the

distance vector di j = x j−xi; ci j = exp
(
−
(
σ
−1
d .‖di j‖2

2
))

; and σd is the scale parameter.

In the closed-form solution, various K j values can be implemented that give distin-

guished voting fields such as plate, ball, or stick based on value selection. The use of a

generic second-order tensor in place of K j eliminates the requirement of computing the

voting field. As we compute structure tensor Ts at each pixel using equation (Eqn 3.1),

the same is used for K j value. Once Si j is calculated at each pixel with its immedi-

ate neighbors, called von Neumann (or 4-) neighborhood N4 using equation (Eqn 3.2).

The votes imposed at each pixel induced from all its neighbors are aggregated using

summation with σd = 4, based on neighborhood size, we get the aggregated positive

semidefinite second-order tensor as:

Tv =
(d−1)

∑
k=0

∑
j∈N4

Si j(d) (Eqn 3.3)

3.3 Anisotropic Diffusion

The tensor votes induced by Tv are in normal space, and thus, their aggregated tensor

is also in the normal space following Gestalt’s principles of perceptual organization.

However, we need the tensor field to encode the geometry of chart objects like bars,

scatterpoints, etc., which implies that the tensor has to be transformed in tangential

20

space from normal space. We implement anisotropic diffusion on the tensor voting

field used for 3D point cloud for our 2D chart images [28, 29].

The anisotropic diffusion for the 2D case requires eigenvalues of Tv, λ0 ≥ λ1, and

corresponding eigenvectors v0 and v1. The tensor after anisotropic diffusion using dif-

fusion parameter δ , for which a widely used value is 0.16 [28, 29], is:

Tv-ad =
1

∑
k=0

λ
′
k.vkvT

k , (Eqn 3.4)

where λ ′k = exp
(
− λk

δ

)
Consequently, tensor voting upon anisotropic diffusion gives a new tensor field, Tv-ad.

3.4 Saliency Map Computation

The eigenvalue decomposition of the local geometric descriptor of a 3D point pro-

vides information of a point belonging to either a line-, surface-, or point-type feature.

For our 2D chart images, eigenvalues of local geometric descriptor Tv-ad computed after

anisotropic diffusion provides the probabilistic geometric classification of pixels to the

line- and point-type features. As this is a probabilistic classification, the sum of prob-

abilities of a point being point-type (Cp) and line-type (Cl) is 1. The Cl and Cp values

are computed using the eigenvalues of Tv-ad as:

Cl =
λ0−λ1

λ0 +λ1
and Cp =

2λ1

λ0 +λ1
, (Eqn 3.5)

where eigenvalues of Tv-ad for the pixel with λ0≥ λ1 are used. Tensor field analysis with

probabilistic geometric classification provides a degenerate point at a pixel with Cp ≈

1.0, attributed to the anisotropic local neighborhood.

21

3.5 DBSCAN Clustering

We observe that the degenerate points computed from both bars and scatterpoints do

not show any specific pattern, shape, or cluster size. Hence, the degenerate points need

to be clustered. In our case, the number of clusters is data-dependent, owing to which

clustering methods using the number of clusters as a hyperparameter can not be used.

Similarly, methods that cater to specific shape or size of clusters are not applicable here,

e.g., k-means clustering works with spherical clusters effectively.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a density-

based well-known clustering algorithm that groups a set of points together based on dis-

tance (usually euclidian distance eps) and the minimum number of points (minPts) [30].

The distance parameter ”eps” specifies the value of proximity of points for them to be

considered as co-existing in a cluster. It means that if the distance between two points is

lower or equal to this value (eps), these points are considered neighbors. The parameter

minPts indicates the minimum number of points required to form a dense region in a

specific application, e.g., minPts = 5 implies that we need at least five points to form a

dense region/cluster. DBSCAN initiates the process of finding clusters using a random

point p and identifies all points density-reachable from it with respect to eps and minPts.

This process is iterative and classifies point p as core point or border point. If point p

is the core point, DBSCAN provides a cluster id to point p. No points will be density-

reachable to point p if point p is border point. In this case, DBSCAN checks for the

next point in the database. The global density parameters ”eps” and ”minPts” are used

to determine if a point is a core point or can be classified as noise. If the neighborhood

of a point in radius eps does not contain points more than minPts, the point is classified

as noise. These noise-classified points are revisited if they are density-reachable to the

point in interest and are classified with cluster id.

In general, small eps values cause large data not to be clustered together by wrongly

22

identifying those points as outliers. At the same time, large eps values introduce cluster

merging, and hence, the majority of objects will be in the same cluster. Thus, finding

an optimal eps value is a requirement, which requires domain knowledge. In our case,

we use the visualization of critical/degenerate points identified using the saliency map

to perform parameter estimation process for DBSCAN.

3.6 Data Extraction

The data extraction process is the same as chart analysis. Different chart types

having different shapes of geometric objects encode the data in image impacts the in-

formation depicted by the chart; similarly, the data extraction process needs to consider

the chart type to determine the steps to be followed in reverse order.

For scatter plots, as each point encodes xy-coordinates labeled on the xy-axis, the

extracted point in pixel space should give us the location of scatterpoint in the image.

To achieve this goal, we identify clusters using DBSCAN and then calculate the centers

for each cluster. As the clusters are generated due to the scatterpoint, the center denotes

the location for the point in concern.

The bar charts are plotted in a specific manner, thus, needing a different method

for data extraction. Our degenerate points guide us to the corner of each bar. The final

cluster centers calculated after DBSCAN clustering are listed as corner points belonging

to each bar. An individual bar has four corners depicted by four cluster centers. These

centers allow us to get the baseline, bar width, and final height of the bar in pixel space.

23

3.7 Our Proposed Algorithm

Our algorithm combines the components mentioned in the above sections to extract

data from the given chart image. As our computational model is implemented at the

pixel level to gather geometric information from graphical objects, the first module of

the workflow needs to cleanly identify the objects and separate these objects from other

image components such as axis lines, grid lines, etc. Our algorithm uses morphological

operations to remove such fine components from the source image, adds a border to the

object to remove effects of pixelation, and gives chart canvas having only chart objects

as entities.

The preprocessed image is then fed through the tensor voting computation module

that also provides saliency mapping for each pixel. The saliency map identifies the

degenerate points from the given set of pixels. The degenerate points are clustered to

get the data encoded with the chart object in pixel space [31].

3.8 Error Analysis for Data Extraction

We perform qualitative and quantitative error analysis by reconstructing charts of the

same type from extracted data and Earth Mover’s Distance, respectively. The accuracy

of chart interpretation and reading is based on the accuracy with which the data/quan-

titative information can be extracted from the given visualization. Hence, Any chart

interpretation and extraction model can be efficient only if the error in data extraction

is minimal. The problem with quantitative analysis lies in the loss of context of chart

text, axes, and legend. As the extracted data is in pixel space, we calculate appropriate

distance measures to compare distributions.

Earth Mover’s Distance, dEMD, is a measure of cross-bin distances to identify dis-

24

Algorithm 1: Data extraction using tensor fields from chart images.
Input: Chart image Ci, chart-type Ct

Output: Data table D
1 Initialize D← ∅
2 Initialize Sdeg-pt ← ∅ // Set of degenerate points

3

4 Initialize Dcq← ∅ // Cluster centroids of degenerate points

5

6 Cc← chart-canvas-extraction(Ci) // from Algorithm 1

7

8 for pixel i in Ci do
9 N ← find-N8-local-neighborhood(i)

10 Tgeom ← compute-tensor(descriptor-type, N) // Local geometric descriptor

11

12 Cl,Cp ← compute-saliency-map(Tgeom)
/* Check if the pixel is a strong degenerate point */

13

14 if Cp>τcp and trace(Tgeom)>τwd then
15 Sdeg-pt ← set-union(Sdeg-pt, i)

16 Cdeg-pt← DBScan(Sdeg-pt) // Cluster degenerate points

17

18 for cluster q in Cdeg-pt do
19 Cq← compute-centroid(q)
20 Dcq← set-union(Dcq, Cq)

21 if Ct is bar-chart then
22 Dcq← set-union(Dcq, missing-points) // Rule-based occurrence patterns

23

24 Dcq← sort-first-by-x-and-sort-second-by-y(Dcq)
25 for unique x-value in (x,y) in Dcq do
26 δy← find-y-intervals(x, Dcq)
27 D← set-union(D, (x, δy)) // Add to data table

28

29 else if Ct is a scatter-plot then
30 for (x,y) in Dcq do
31 D← set-union(D, (x,y)) // Add to data table

32

33 return D

25

similarity between two multi-dimensional distribution, which uses ground distance mea-

sures [32]. We compute the Earth Mover’s Distance between:

• the univariate distributions for the extracted data and original data in the case of

bar charts, dEMD-BC.

• the extracted data and the frequency table of the original data in the case of his-

tograms, dEMD-HG.

• the 2D point clouds of the extracted data and original data in the case of scatter

plots, dEMD-SP.

We normalize the extracted data as well as source data to compute EMD.

3.9 Visual Analysis of Tensor Fields

Here, we propose a computational model for data extraction from chart images

based on local geometric descriptors. The model can be made optimal using a com-

parative study of various geometric descriptors such as Ts, Tv, and Tv-ad. We propose

using saliency values, shape, and orientation of the tensor as metrics to compare the

outcomes of all descriptors by visualizing these measures. The tensor field visualiza-

tion helps in data exploration, feature/pattern identification, and decision making. We

use the following methods for visualizing different entities:

• Dot plots with color-mapping to study patterns across points/pixels based on

saliency value, including degenerate points.

• Ellipsoid glyph visualization for tensor field analysis based on orientation and

shape of feature descriptor.

26

3.9.1 Dot Plot with Color-map for Saliency Value

As saliency values denote the likelihood of a point/pixel belonging to different fea-

ture classes: line-, surface-, and point- type, we use Cl , Cp values generated for our 2D

images and map the saliency values at each pixel with color-blind safe divergent color

palette, namely the coolwarm palette. As Cl +Cp = 1.0, we take Cl values from 0 to 1

and visualize the same using dot plots with color mapping. The degenerate points are

identified as blue points in the visualization, pointing to a high Cp value, as shown in

Figure FC3.1, row D.

3.9.2 Tensor Glyph Visualization

Glyphs are marks used in visualizations, such as arrows, to study the properties

at a single point or instance, and the glyph size, shape, color, and position are used

as channels. Here, we use ellipsoid glyphs to visualize the shape and orientation of

tensors at each point. We take eigenvectors of our second-order tensor calculated for

each pixel and use the same with quiver plot to visualize glyph at each pixel. The

glyphs are assigned a color based on the color mapping associated with major and

minor eigenvector, i.e., the major eigenvector is colored red, and the minor eigenvector

is assigned blue color. The visualizations for structure tensor Ts and tensor voting after

anisotropic diffusion Tv-ad are shown in Figure FC3.1, row B, and C.

3.9.3 Dot Plot for Degenerate Point Visualization

The critical points are identified on filtering the saliency values at all pixels. As

these pixels create a sparse cluster, the visualization helps to locate these clusters on the

source image, as shown in Figure FC3.2. We use the dot plot to visualize these points

and use the source image as a watermark to locate the critical points in the image.

27

C
ha

rt
 Im

ag
e

A

B

C

D

 T
S
(G

ly
ph

)
T

v-
ad

(G
ly

ph
)

T
v-

ad
 S

al
ie

n
cy

 M
ap

Cl=0.0
Cp=1.0

Cl=1.0
Cp=0.0

bc-1 sp-1 hg-1

Figure FC3.1: The tensor fields computed from images of charts using our approach. (A) Input
images of bar chart, scatter plot and histograms. Tensor fields computed on the images, visual-
ized using glyphs and colored by saliency values, include (B) structure tensor Ts, and (C) tensor
voting field of Ts after anisotropic diffusion Tv-ad. (D) The saliency values of Tv-ad visualized
using dot plots. The coolwarm color mapping associated with corresponding Cl and Cp saliency
values, used in the visualizations, is shown in the colorbar.

28

C
ha

rt
 Im

ag
e

A

B

D
eg

en
e

ra
te

 P
oi

nt
s

C

R
ec

on
st

ru
ct

ed
 C

ha
rt

bc-1 sp-1 hg-1

Figure FC3.2: Use of degenerate points in Tv-ad field for data extraction from chart images, and
validated using chart reconstruction. (A) Input images of bar chart, scatter plot and histogram.
(B) Visualization of the pixels corresponding to degenerate points based on Cl and Cp values
of Tv-ad at the corners of bar/bin for and near the center of scatterpoint, (C) The reconstructed
charts from the extracted data for the input images.

29

3.10 Experiments

Tensor fields are computed at pixel level, and hence, the image resolution affects the

identification of degenerate points. For experiments, we have prepared our own dataset

by collecting data both from web images and synthetically generated images. The syn-

thetic images have been generated using the Python library, matplotlib.pyplot [33],

and are stored in .png image format. The experiment set contains images of bar charts,

scatter plots, and histograms. For all chart images of test datasets, we constructed the

tensor fields and reconstructed data. We specifically used this library since it gener-

ates high-resolution plots. The tensor field computation works best in high-resolution

images, thus making our pixel-based algorithm sensitive to the input image resolution.

For bar charts, we included various cases where a large number of bars are plotted in

a single visualization, non uniformly placed bars, smaller set of bars, and bar charts with

large variation in the bar heights. Scatter plot images contain positive and negatively

correlated data representation and overlapping scatterpoints. For histograms, we plotted

data that showcase variations in the number of bins, with close-to-zero frequencies in

some of the histogram bins, with several large variations in frequencies represented as

several peaks and valleys in the histogram, and with the close-to-normal distribution.

As we have the available data tables used for synthetic chart images, we also perform

quantity-based error analysis by computing Earth Mover’s Distance.

3.10.1 Results

The visualizations for tensor fields, quiver plots of eigenvectors, color map for

saliency values, and degenerate point are generated using matplotlib.pyplot. Our

results are shown in Figures FC3.3–FC3.8, and Table TC3.1, and are further analyzed

here.

30

3.10.1.1 Tensor Field Analysis

Our local geometric descriptors Ts, Tv, and Tv-ad encode geometric attributes by

exploiting spatial locality. The tensor Tv-ad provides stronger degenerate points with

higher Cp values as compared to Ts in our experiments listed in Figures FC3.3–FC3.4–

FC3.5–FC3.6–FC3.7–FC3.8. Hence we use Tv-ad for our data extraction process.

C
ha

rt
 Im

ag
e

A

B

C

D

 T
S
(G

ly
ph

)
T

v-
ad

(G
ly

ph
)

T
v-

ad
 S

al
ie

n
cy

 M
ap

Cl=0.0
Cp=1.0

Cl=1.0
Cp=0.0

bc-2 bc-3 bc-4

Figure FC3.3: The tensor fields computed from images of charts using our approach. (A) Input
images of different variants of simple bar chart. Tensor fields computed on the images, visual-
ized using glyphs and colored by saliency values, include (B) structure tensor Ts, and (C) tensor
voting field of Ts after anisotropic diffusion Tv-ad. (D) The saliency values of Tv-ad visualized
using dot plots. The coolwarm color mapping associated with corresponding Cl and Cp saliency
values, used in the visualizations, is shown in the colorbar.

The tensor field visualization using glyphs and dot plots color mapped based on

31

saliency value shown in Figures FC3.3–FC3.4 gives degenerate points having high

saliency value. The sparse cluster of such degenerate points can be seen at corners/junc-

tion of bars and histograms and centers of scatterpoints, as displayed in Figures FC3.6–

FC3.8. For clean visualization, we plotted the tensor field and saliency values at every

third pixel.

C
ha

rt
 Im

ag
e

A

B

C

D

 T
S
(G

ly
ph

)
T

v-
ad

(G
ly

ph
)

T
v-

ad
 S

al
ie

n
cy

 M
ap

Cl=0.0
Cp=1.0

Cl=1.0
Cp=0.0

sp-2 sp-3 sp-4

Figure FC3.4: The tensor fields computed from images of charts using our approach. (A) In-
put images of different variants of simple scatter plots. Tensor fields computed on the images,
visualized using glyphs and colored by saliency values, include (B) structure tensor Ts, and (C)
tensor voting field of Ts after anisotropic diffusion Tv-ad. (D) The saliency values of Tv-ad visu-
alized using dot plots. The coolwarm color mapping associated with corresponding Cl and Cp

saliency values, used in the visualizations, is shown in the colorbar.

We take a look at the impact of bar thickness on tensor field computation in im-

ages of bar charts. Bars with standard or more width demonstrate homogeneity in the

32

bar interior, as we observe zero-tensors near the centroid, as shown in Figure FC3.1,

bc-1. Hence, non-zero tensors for the non-zero gradient clearly demarcate the bound-

aries of thick bars. However, the tensor field in the case of thinner bars, as shown in

Figure FC3.3, demonstrates that the boundary of the bar is not clearly demarcated. We

observe that there is the degenerate points at the different corners of the bar are closer.

The data extraction process relies on correctly identifying two distinct corners for each

bar, which may fail in the case of thinner bars if the clustering algorithm is not adjusted.

Hence, the visualization of degenerate points is required for changing hyperparameters

of the DBSCAN clustering algorithm.

3.10.1.2 Data Extraction

Data extraction using our tensor field model for different chart types and images is

as shown in Figures FC3.6, FC3.7, and FC3.8. As our module works at the pixel level

on chart canvas, without any text component, the extracted data is based on the pixel

location occupied by the chart objects. Threshold-based filtering of degenerate points

removes noise and hence helps in the data extraction process.

3.10.1.3 Error Analysis

The reconstructed charts shown in Figures FC3.6, FC3.7, FC3.8 are generated using

extracted data in pixel space and hence, should be compared with the source image

visually. As the source data is available only for the synthetic images, We calculated

Earth Mover’s Distance between the extracted data and the source data for the synthetic

plots only. The EMD values are listed in Table TC3.1 for synthetic scatter plots, bar

charts, and histograms.

The visual comparison of reconstructed charts and input chart image also points out

the missing values/scatterpoints in Figure FC3.7 marked in red contour. The type-2

33

C
ha

rt
 Im

ag
e

A

B

C

D

 T
S
(G

ly
ph

)
T

v-
ad

(G
ly

ph
)

T
v-

ad
 S

al
ie

n
cy

 M
ap

Cl=0.0
Cp=1.0

Cl=1.0
Cp=0.0

hg-2 hg-3 hg-4

Figure FC3.5: The tensor fields computed from images of charts using our approach. (A) Input
images of different variants of simple histograms. Tensor fields computed on the images, visual-
ized using glyphs and colored by saliency values, include (B) structure tensor Ts, and (C) tensor
voting field of Ts after anisotropic diffusion Tv-ad. (D) The saliency values of Tv-ad visualized
using dot plots. The coolwarm color mapping associated with corresponding Cl and Cp saliency
values, used in the visualizations, is shown in the colorbar.

34

C
ha

rt
 Im

ag
e

A

B

D
eg

en
e

ra
te

 P
oi

nt
s

C

R
ec

on
st

ru
ct

ed
 C

ha
rt

bc-2 bc-3 bc-4

Figure FC3.6: Use of degenerate points in Tv-ad field for data extraction from images of bar
charts, and validated using chart reconstruction. (A) Input images of different variants of sim-
ple bar chart. (B) Visualization of the pixels corresponding to degenerate points based on Cl
and Cp values of Tv-ad at the corners of bar/bin for and near the center of scatterpoint, (C) The
reconstructed charts from the extracted data for the input images.

35

C
ha

rt
 Im

ag
e

A

B

D
eg

en
e

ra
te

 P
oi

nt
s

C

R
ec

on
st

ru
ct

ed
 C

ha
rt

sp-2 sp-3 sp-4

Figure FC3.7: Use of degenerate points in Tv-ad field for data extraction from images of scatter
plots, and validated using chart reconstruction. (A) Input images of different variants of simple
scatter plot. (B) Visualization of the pixels corresponding to degenerate points based on Cl
and Cp values of Tv-ad at the corners of bar/bin for and near the center of scatterpoint, (C) The
reconstructed charts from the extracted data for the input images, with red ellipses indicating
omission errors.

(omission) error occurs as a result of scatterpoints being clustered together and over-

lapped on each other. The overlapped scatter plots do not follow any specific cluster

patterns such as standard distance or the number of points in a cluster. Hence, For

such cases, DBSCAN hyperparameters have to be reconsidered and modified for each

computation belonging to different scatter plot images.

We compare our result of data extraction for scatter plot originally listed in Scatter-

act [18] as shown in Figure FC3.7, sp-4. The chart contains unique “clover” marks for

scatterpoint notation that attributes to several false positives (type-1 errors) using Scat-

teract. In this case, the type-1 error occurs due to three different scatterpoints identified

at each “clover” mark. We avoid such false positives by detecting the “clover” marks

36

C
ha

rt
 Im

ag
e

A

B

D
eg

en
e

ra
te

 P
oi

nt
s

C

R
ec

on
st

ru
ct

ed
 C

ha
rt

hg-2 hg-3 hg-4

Figure FC3.8: Use of degenerate points in Tv-ad field for data extraction from images of his-
tograms, and validated using chart reconstruction. (A) Input images of different variants of
histograms. (B) Visualization of the pixels corresponding to degenerate points based on Cl
and Cp values of Tv-ad at the corners of bar/bin for and near the center of scatterpoint, (C) The
reconstructed charts from the extracted data for the input images, with red ellipses indicating
omission errors.

as centroids of clusters. We change cluster distance parameters “eps” of DBSCAN

clustering to include all degenerate points of “clover” mark.

The data extraction process using tensor field analysis performs well on histogram

images listed in Figure FC3.8. The errors are highlighted for both histograms in Fig-

ure FC3.8, where the insignificant bin height difference is not captured as well as the

bin close to the x-axis is missing.

The qualitative error analysis supports the values received for EMD calculation, i.e.,

higher dEMD value denoting higher error for scatter plots as compared to bar charts

as a result of omission errors. The histograms of tailed distributions containing ∼0-

37

Table TC3.1: Error computation using Earth Mover’s Distance of distributions of normalized
values of original data and reconstructed data belonging to original and reconstructed images,
respectively. dEMD > 0.10, in boldface, can be considered relatively high.

Scatter plot Bar Chart Histogram
Figure FC3.2–FC3.7 dEMD Figure FC3.6 dEMD Figure FC3.2–FC3.8 dEMD

sp-1 5.4e-2 bc-2 4.4e-3 hg-1 1.9e-2
sp-2 1.1e-2 bc-3 2.6e-3 hg-2 6.3e-3
sp-3 5.5e-2 bc-4 3.0e-3 hg-4 3.9e-2

frequency bins at the tails cause larger errors Figure FC3.8, hg-4 in comparison to

other histograms.

38

CHAPTER 4

CHART IMAGE CLASSIFICATION AND ANNOTATION

Data can be represented using different visualizations, such as the same data can

be plotted using a bar chart as well as a pie chart or a scatter plot. Data representa-

tion in charts showcases different aspects and properties of data based on what type

of chart has been selected for visualization. In the intelligent mathematics problem-

solving system related to high school, the classification of the statistical chart is a key

step. Consequently, the classification of statistical charts has become an urgent problem

to be solved. Similarly, to deal with the graphical perception of the chart, it is important

to know the type of chart in order to follow a correct approach to analyze the same.

Figure FC4.1 lists basic chart types introduced at a primary level of education.

The analysis and interpretation of these chart types require different steps and un-

derstanding. The reverse engineering on these chart images requires similar steps that

are initially used to create the chart from source data. All the chart types require differ-

ent data handling, plotting, and extraction mechanism. For example, the height of bars

denotes the value represented by that particular bar, and the width has no contribution

to the evaluation of data. Similarly, a slice of the pie chart shows the value/percentage

contribution of different elements.

A Single chart type can visualize the data in various forms, e.g., a bar chart type

has multiple representations such as grouped bar, stacked bar, and depending on the

39

(a) Scatter plot (b) Bar chart

(c) Line chart (d) Pie chart

Figure FC4.1: Basic chart types introduced for chart graphicacy at the primary education level.

orientation assigned to the chart, it can be a vertical bar or horizontal chart. These

details and sub-types play a vital role in the extraction process.

Here, our goal is to provide a component that can provide the chart type and chart

sub-type for a given chart image. These details are used for further computation on the

image. We have trained our models for performing classification tasks on chart images.

4.1 Chart Type Classification

The divergent approach associated with chart creation and analysis for different

datasets and requirements needs to be considered while doing reverse engineering oper-

ations such as data extraction from the chart. Hence, we have taken into account some

of the basic charts that are being widely used through classroom programs in schools.

The categories included for our classification model are:

40

• Bar chart

• Scatter plot

• Line chart

• Pie chart

4.1.1 Dataset for Type Classification

Even though Machine Learning has been in light since the 1950s, major develop-

ment, problems, and solutions came into the picture in the late 1990s. Extravagant

progress in the ML area is due to the availability of larger datasets to perform different

tasks. This observation promotes the importance of good quality/quantity data for ML

models. Dataset is a collection of similar instances sharing the same properties. For ma-

chine learning models to understand how to perform various actions, training datasets

must first be fed into the machine learning algorithm, followed by validation datasets

(or testing datasets) to ensure that the model is interpreting this data accurately.

CNN-based model for classification requires a large dataset for training. A corpus

of chart images with correct tagging of chart types plays an important role in accurate

chart type classification. We collected data from different sources such as FigureQA,

ReVision, and google search results. To train and test our chart type classifier, we have

used the FigureQA [34] dataset, ReVision dataset [13], and Vega dataset [8]. The reason

to use three different datasets to train our model comes from including different images

possessing different sizes, quality, and representation of statistical plots. The dataset

provides high-quality chart images belonging to categories of bars, scatter plots, lines,

and pie charts. The variety in the dataset helps ML models to learn features efficiently

that can be generalized for a large number of images.

For natural images, augmentation helps in creating large datasets while applying

41

different transformations to the collected set of images. The transformation can be re-

sizing, rotation, smoothening, etc. For chart type identification, such transformations

on images may not contribute much to the dataset due to sparse and structured repre-

sentation in charts that might change the sense of representation if rotated and might

not change any details in case of operations like resizing and smoothening. We have

collected approximately 2000 images for training chart type classifier.

4.1.1.1 Preprocessing

The charts from different sources mentioned in section 4.1.1 contain images of dif-

ferent sizes and quality. The input to a fully connected layer is ”flattened”, and then the

number of weights is determined by the number of input elements (channel and spatial

combined) and the number of outputs. If the size of the input image changes, the num-

ber of weights to be trained in a fully connected layer also changes, which requires the

whole model to retrain. As we have two fully connected layers at the end part of our

model to declare a class of image, we can not perform training using a variable-sized

image dataset. To avoid errors while training, we have preprocessed the dataset by re-

sizing images to a fixed size (200, 200) using resize() function from the Python imaging

(PIL) library. The function requests hyperparameters like new dimensions and resam-

pling method. We have selected PIL.Image.ANTIALIAS (a high-quality downsampling

filter)to get a high precision image. We have another resize option from the OpenCV

library as cv2.resize(), which does not provide ANTIALIAS as one of the options for

resampling methods, hence compromises image quality.

4.1.1.2 Image labelling

Dataset needs to be in a particular format in order to solve an image classification

problem. The dataset should be divided into two folders, one for the train set and the

42

other for the test set. The training folder needs a CSV file that contains the names of

all the training images and their corresponding true labels/ ground truth. The CSV file

in the test set is different from the one present in the training set. This test set CSV file

contains the names of all the test images, but they do not have any corresponding labels.

The model will be trained on the images and labels present in the training set, and the

label predictions will happen on the testing set images.

Based on the discussed dataset requirements, we separate all training images in

different directories based on their chart type. As we do not have pre-labeled data,

this task is performed with a python script. The script requires a path of image files

belonging to the bar, scatter plot, line, and pie chart stored in different folders (named as

corresponding chart type). Our labelling script reads through each image from different

folders and adds the image path in the label.csv file, where the label of the image is

stored with the image path. The image label is decided on the basis of the folder name

in which the image was placed. Hence, the way in which images are stored in directories

named with chart types is important to our classifier. The directory structure to store

images is as shown in Figure FC4.2

Training Dataset

Bar Chart Scatter plots Line Chart Pie Chart

Figure FC4.2: Training dataset and directory structure

4.1.2 Inception Model

The “Inception” micro-architecture was first introduced in their 2014 paper [1]. We

use a pre-trained Deep Learning Convolutional Neural Network model called Incep-

tion. The Inception network was an important milestone in the development of CNN

43

classifiers. Prior to its development as a module to GoogleNet, most popular CNNs

just stacked convolution layers deeper and deeper, hoping to get better performance.

This model has been pre-trained for the ImageNet Large Visual Recognition Challenge

using the data from 2012, and it can differentiate between 1,000 different classes. We

retrain the model for our chart images by providing labeled images of different types of

charts collected from FigureQA and ReVision datasets. The prediction is provided as a

probability of the source image belonging to a particular class.

4.1.2.1 Architecture

The image in Figure FC4.3 is the “naive” inception module. It performs convolution

on input, with three different sizes of filters (1x1, 3x3, 5x5). Additionally, max pooling

is also performed. The outputs are concatenated and sent to the next inception module.

The combination of multiple inception modules creates GoogLeNet. Inception v2 and

Inception v3 upgrade on the initial version, which increased the accuracy and reduced

the computational complexity.

The basic architecture of Inception was introduced by Szegedy et al. [1] that is

represented in Figure FC4.4. The Inception network is complex, heavily engineered,

and the first one with batch normalization. Inception-v3 is a successor to Inception-v1.

4.1.3 Limitations of Pre-trained Models

As we know, CNN is a machine learning algorithm for machines to understand the

features of the image with foresight and remember the features to guess whether the

name of the new image fed to the machine. ImageNet challenge brought out the best

classification models such as GoogleNet, ResNet, AlexNet, etc. The datasets comprised

approximately 1 million images and 1,000 object classes. As these models are part of

different machine learning libraries, it is recommended to use the pre-trained models

44

Figure FC4.3: Naive Inception module described by Szegedy et al. [1].

Figure FC4.4: GoogleNet Architecture described by Szegedy et al. [1]. The stem, marked by the
orange box, performs preliminary convolutions. The auxiliary classifiers are marked by purple
boxes, and the remaining structures are inception modules.

45

in order to save time and effort. Transfer learning and fine-tuning these models have

made research in the machine learning area much easier and less time-consuming, as

training the model might take an hour to months. Also, transfer learning removes the

requirement of large data for training the model.

The reason behind not using transfer learning for our classifier directs us to a funda-

mental definition of transfer learning. “Transfer learning makes use of the knowledge

gained while solving one problem and applying it to a different but related problem.”

The definition stands for usage of transfer learning when there is a relation between

our dataset and the pre-trained model. For example, we can use a different pre-trained

model over ImageNet dataset with Cifar10,100 datasets, but we can not use the pre-

trained model of ImageNet with the biomedical images because ImageNet does not

contain images belonging to the biomedical field, so in such case, we should train the

model from scratch over biomedical images and then we can uses this model for trans-

fer learning. Similarly, we haven’t seen any description of ImageNet dataset containing

statistical plots or any chart image data. Hence we need to train these models from

scratch, which limits us back to training with a sufficiently large dataset to avoid over-

fitting. Training these models from scratch will also lead us to high time consumption.

4.2 VGGNet Classifier

As our images are sparse and can be classified mostly based on the shape of objects

in the image, instead of starting over from scratch with a model we don’t know much

about, we have tried to create our own model to classify the type of chart that can also

be implemented for another task named as sub-type classification illustrated in 4.3. As

the initial hidden layers of any CNN model try to capture features such as identifying

different components and then recognizing the shape created by these components, we

have added four convolutional layers, each being followed by pooling layers.

46

VGGNet was introduced in the same year 2014 as GoogleNet, and was selected as

the second-best model for ImageNet challenge [2]. The network architecture is known

for its simplicity and has famously been used for tasks like object detection and seg-

mentation. Hence, we use VGGNet architecture to implement our classifier that can

be further extended for detecting and locating chart objects in image to extract clean

canvas. VGGNet uses only 3×3 convolutional layers stacked on top of each other in

increasing depth. VGGNet models are named VGG11, VGG13, VGG16 with suffix

11, 13, 16, etc., where the numeric suffix stands for the number of weight layers in the

network.

4.2.1 Architecture

Following traditional CNN-based architecture, VGGNet architecture uses a stack of

convolutional layers for network creation. CNN image classifier takes an input image,

processes it, and classifies it under certain categories. We use VGG architecture with

the kernel size of (5,5) as shown in FC4.5, containing convolutional layers and pooling

layers followed by fully connected layers, also known as dense layers [35] [36].

In
p

u
t

C
o
n

v
 1

-1

C
o
n

v
 1

-2

P
o
o
li
n

g

C
o
n

v
 1

-1

C
o
n

v
 1

-2

P
o
o
li
n

g

C
o
n

v
 1

-1

C
o
n

v
 1

-2

P
o
o
li
n

g

C
o
n

v
 1

-1

C
o
n

v
 1

-2

P
o
o
li
n

g

O
u

tp
u

t

D
e
n

s
e

D
e
n

s
e

Figure FC4.5: Our VGGNet inspired classification model with convolutional layers stacked
along with max-pooling layers with tailing fully connected layers shown in LeNet style. Our
model has total of 10 layers with 2 convolutional layers before each pooling layers similar to
VGG13 [2] architecture with filters (3x3) and (5x5).

Convolution is the first layer to extract features from an input image. Convolution

preserves the relationship between pixels by learning image features using small squares

of input data, also known as kernels/filters. For an input image X and filter f, the

convolved image (Z) can be represented as:

47

Z=X * f

It is a mathematical operation represented by * that takes two inputs, an image ma-

trix, and a filter or kernel. We use rectified linear unit (ReLu) (Eqn 4.1) as an activation

function in layers other than the last fully connected/dense layer. The function returns

0 if it receives any negative input x but return input x as it is for any positive input x.

f (x) = max(0,x) (Eqn 4.1)

The pooling layers section would reduce the number of parameters when the images

are too large. Spatial pooling, also called subsampling or downsampling, reduces the

dimensionality of each map but retains important information. Spatial pooling can be

of different types such as max pooling, average pooling and sum pooling. We use max

pooling, the most commonly used type for our CNN architecture. The max-pooling

takes the largest element from the rectified feature map. The fully connected layer

provides the class label for a given input image, and we use the softmax activation

function (Eqn 4.2). The output from the last pooling layer needs to be flattened and

passed through the fully connected layer to get a class label.

f j(z) =
ez j

∑k ezk
(Eqn 4.2)

In softmax activation function (Eqn 4.2), all the zi values are the elements of the input

vector and can take any real value. The the normalization term at the bottom which

ensures that all the output values of the function will sum to 1, thus constituting a valid

probability distribution.

48

(a) Simple Bar (b) Grouped Bar

(c) Stacked Bar (d) Histogram

Figure FC4.6: Examples of different sub-types of the bar chart with horizontal and vertical
orientation.

4.3 Chart Sub-type Classification

The problem of chart type classification introduces another step to be taken for sub-

type classification as the data represented using one class of chart type can still be

different in terms of design space and visual elements. For example, in many datasets,

visualization using three simple bar charts can also be done with the help of a single

grouped bar chart or stacked bar chart. Another example associates us with the chart

orientation, i.e., the horizontal and vertical bar objects are both highly used in the data

visualization domain. Some sample bar charts belonging to different sub-categories and

orientations are shown in FC4.6.

Our algorithm requires pre-existing characteristics of different charts for fine-tuning

its data extraction. Hence, the need to identify the sub-type is a requirement for our

49

reverse engineering task.

4.3.1 Dataset

The FigureQA dataset is not currently inclusive of all types of bar charts, even the

ones which are commonly used. Hence, we have created our own dataset for sub-type

classification pertaining to only bar chart categories. The image corpus contains 1000

images and is created with google downloaded chart images that were separated into

different folders for the labelling process. We consider seven total categories, including

horizontal and vertical orientation of simple, grouped, stacked bar. We also include

histograms as bar sub-type as design space among various tools such as Google Sheets

and Microsoft excel ®allow users to plot histograms with the help of column charts due

to geometric similarities between bin and column/bar. The dataset also contains images

of scatter plot, line, and pie chart in the ”Other” category that helps our classifier to

predict if the given image does not belong to bar chart types and discards the image.

We have downloaded approximately 1000 images of various types of bar charts to train

chart sub-type classifier.

4.4 Chart Annotation

Image Annotation is the process of labelling data in the various mediums of images,

text, or video. The labels are usually predetermined by a machine learning engineer

or computer vision scientist based on the requirements and are selected to provide the

computer vision model information on objects depicted in the image. Hence, annota-

tion becomes a key step to generate a training dataset for computer vision tasks such as

object detection and segmentation. Image annotation task is performed in various ways

like bounding box, polygon, line, and point annotation. A bounding box is the most

commonly used and simplest annotation method. This requires labelers to draw a box to

50

enclose the region of interest in an image. This annotation method is often used in train-

ing data generation for object classification, localization, and detection models. A wide

range of annotation tools is available on the internet to perform requirements-based or

domain-based annotation including, LabelImg, Labelbox, VGG Image Annotator, etc.

Image annotation is a manual task and requires user interaction to select ROI and

label it accordingly. For chart images, manual marking and annotation of bounding

boxes for ROIs have been widely used [5, 20]. Hence, the selection of an annotation

tool depends on the steps to be followed to annotate the image components and user

interface of the tool. As our chart images are sparser as well as clean and structured, the

requirement associated with the annotation tool is only to draw and adjust the bounding

box around the object, assign a label to selected ROI and save the annotation in simpler

formats to process it further if needed.

Figure FC4.7: Image annotation on an image of bar chart using LabelImg tool to locate chart
components in the given image.

LabelImg [37], a Python tool with a user-friendly graphical interface based on Qt,

helps us to achieve the final annotation for our chart images by marking and annotating

chart components. We label different chart components as canvas, x-axis, y-axis, x-

51

labels, y-labels, legend, title, x-title, and y-title based on their position and role in the

visualization. The tool allows saving annotation in XML files in PASCAL VOC format

as well as a text file in YOLO format. The XML annotation stores information about

the bounding box of each label by saving minimum and maximum x and y coordinates.

We use XML annotation to extract the canvas region as well as for text localization.

The labels assigned to different components can be seen in the right tab of the tool. The

selection of a label from the right tab highlights the component in the uploaded image,

and hence, the bounding box can be readjusted for the selected component if needed. A

curated dataset containing 1500 images has been annotated using LabelImg for charts.

The GUI and annotations using LabelImg are shown in Figure FC4.7.

Annotated canvas region is considered as an input for our preprocessing module that

performs morphological operations like dilation and erosion on the region to remove

grid line and overlaid legends, etc. This process is named as canvas extraction process

that gives image having only graphical objects such as bars, scatter points, etc. The

output is used for the tensor voting computation module. Annotation of text components

is used with text detection and recognition models to increase model accuracy.

(a) Textured grouped bar (b) Hollow bars with text inside bar (c) Bar chart with graphics (d) Hand drawn bar chart

Figure FC4.8: Bar charts drawn with different design formats, that fail with either our chart
classifier or our data extraction algorithm.

4.5 Experiments

The annotations saved in XML files help us in improving the canvas extraction pro-

cess and hence enable our workflow to perform chart digitization for high-resolution

52

images with ∼100% accuracy.

For testing our chart-type classifier, we prepared a test dataset that contains images

of bar charts, scatter plots, line charts, and pie charts. As our main focus is on images

of bar charts and scatter plots, we have collected 100 images of bar charts and observed

that the classifier labels ∼94% of images correctly as a bar chart. Similarly, we have

collected 100 images of scatterplots and observe ∼81% accurate labels identified by

our classifier.

Our chart type classifier works with ∼93% accuracy and sub-type classification

models work with ∼90% accuracy for bar chart images, where our training set cov-

ers several variants. The classification fails for certain cases where the standard plotting

approach is not used. For instance, the textured grouped and hollow bar charts shown

in Figure FC4.8 either do not get classified correctly in our image classifier or fail in

our chart object extraction process. We are working on including images of bar charts

from various design spaces as well as hand-drawn charts to improve our classifier for

sub-type classification.

53

CHAPTER 5

MULTI-CLASS AND MULTI-SERIES CHARTS

Uni-variate data analysis is less efficient in the light of multivariate data collections

being the norm. Hence, while simple bar charts and scatter plots serve the purpose

of simpler analysis, more complex forms of charts are needed in the current scenario.

Most charts available from the sources of chart images also tend to be more complex

than simple charts, where the latter is used only in the early stages of chart graphicacy.

(a) Scatter plot (b) Stacked Bar (c) Grouped Bar

Figure FC5.1: Examples of multi-series/multi-class bar chart and scatter plot.

One of the widely used complex charts is where the data is plotted juxtaposed or

stacked in a single chart to get more clarity and context. The plots that contain informa-

tion of two different data points or features are called multi-series charts and are used

most frequently for comparative studies, for example, a company’s revenue vs. its costs

over time or New users per day vs returning users per day, etc. These charts are often

used to demonstrate the trends across different data series in a single visualization that

can elaborate on the relationship among these data series. The examples of multi-series

54

charts belonging to the bar chart and scatter plot are listed in Figure FC5.1.

In this chapter, we aim to extend the tensor voting analysis explained in chapter 3

for multi-class/multi-series bar charts and scatter plots by improving the rule-based

extraction method to capture data from multi-series charts. Many previous attempts,

such as [4], have limited the data extraction process for simple and grouped bar charts,

leaving the stacked bar chart unattended. Our goal is to suggest a more generic approach

for the chart digitization process for a larger variety of charts.

5.1 Grouped Bar Chart

As the feature set grows, a simple chart is not sufficient in representing multiple

features/ grouped/ sub-groups. Then, the simple charts bring in complexity to represent

multiple features or classes/groups. For instance, bar charts are plotted with the help

of separate bars representing each of the sub-groups, and the sub-groups are colored,

shaded, or textured differently to distinguish between them. Like a simple bar, the

height of each bar depicts value, and the color/shade of each bar in the visualization is

associated with the group information from the source data. The questions about the

bars belonging to certain sub-groups are then completely answered using the legend

provided in visualization. This bar chart category is also known as a clustered bar chart,

multi-set bar chart, or grouped column chart. The side-by-side arrangement of bars of

grouped categories makes the interpretation of the differences inside a group and even

between the same category across groups easier.

However, the grouped bar charts can become complex if the creator of the chart

encodes too many classes in a single visualization. Thus, very few variables, but (> 1),

are usually used in such charts. This limitation also indirectly supports the redesign of

complex charts to simpler charts by breaking down the composite visualization.

55

5.2 Stacked Bar Chart

The stacked bar chart is another way to visualize the sub-groups in which the sub-

groups are stacked on the same bar. Similar to a grouped bar chart, different col-

ors/shades are used for different sub-groups. This representation is useful, where the

goal is to encode the total size of groups and the proportion between groups. The total

height or length of the bar shows the total size, and different colors or shadings are used

to indicate the relative contribution of the different sub-groups. These stacked bar chart

attributes are the reason behind the profound use in financial reports and other corporate

settings. Similar to a grouped bar chart, a stacked bar chart can also become intimidat-

ing if the encoding is not correct or if the data has a large number of sub-groups.

5.3 Multi-class Scatter Plot

Similar to simple scatter plots discussed in chapter 3, multi-class scatter plots also

demonstrate mapping between the x- and y-axes values. However, this representation

extends the simple scatter plots by additionally encoding class/group information with

each scatterpoint using the color-mapping selected for classes. Multi-class scatter plots

are mainly used to organize the display of the clustering in datasets, correlation, etc.

For example, multi-class scatter plots are highly used in machine learning to visualize

multi-class classification. Multi-class scatter plots can be treated as several overlays of

simple scatter plots using the same coordinate system and units and scales on the axes.

5.4 Data Extraction

The data extraction algorithm for multi-series charts is similar to simple charts dis-

cussed in chapter 3 till DBSCAN clustering and baseline computation using cluster

56

centers. However, as CIE-Lab color space is highly recommended for the perceptual

understanding of colors, we convert our RGB image to CIE-Lab color space. The fi-

nal image is processed for gradient tensor for structure tensor computation. The values

used for normalizing in CIE-Lab follow range as below:

• L has values in [0, 100]

• a has values in [-127, 127]

• b has values in [-127, 127]

We proceed with structure tensor Ts to compute voting tensor Tv and voting tensor

after anisotropic diffusion Tv-ad at each pixel. Degenerate points are filtered from the

set of non-zero tensors based on the saliency value. The final set of degenerate points

are processed through DBSCAN for clustering. Once the clusters and corresponding

centers are identified, the computation in the case of the stacked bar chart specifically

changes as the total bar/column height are no longer provides value for groups. We

include rule-based steps to be taken if the bar chart is classified in grouped or stacked

categories which includes the following steps [36]:

• Pick the legend colors.

• Identify the number of classes depicted in the chart

• Calculate bar/stack heights.

In the case of scatter plots, the cluster centers work as the xy-coordinates of scatter-

point in pixel space. The pixel to data mapping based on legend and classes is mention

in section 5.4.1.

57

5.4.1 Legend Mapping

The analysis of multi-series or multi-class visualization is highly dependent on the

legend as the color encoding point out to the class a graphical object belongs to. As we

annotate our data in the initial stage of the algorithm, we mark the legend on the image

and save the information in XML annotation.

We render through the XML and get the rectangular/square bounding box coordi-

nates in terms of maximum and minimum of both x and y coordinates in pixel space to

get the legend component. We process the legend bounding box through morphologi-

cal operations similar to the canvas extraction module discussed in chapter 3 to get the

RGB value of color from legend [36] [35]. The number of colors in legend also denotes

the number of classes depicted in the original image. This can be cross verified with

the text detected using OCR, i.e., if the two colors are found in legend, then the text

detection on the legend module should return two class labels.

As of now, the extracted data is in pixel space; we need to map the pixel location

with the image data itself. We perform this task using our annotations done in the pri-

mary phase of the algorithm and text detected through OCR. We normalize the center

coordinates and the coordinates of bounding boxes of labels that encapsulate the desig-

nated text region. This gives us the exact data being represented by the original image.

5.5 Experiments

For experiments, we create a test dataset for the bar chart and scatter plots by

collecting images synthetically generated as well as downloaded from the internet.

We have generated the synthetic test dataset using the matplotlib.pyplot library

in python [33]. The results are shown in Figures FC5.2–FC5.7, which also show the

intermediate ones for each module of our algorithm using a subset of test case images.

58

We have uploaded our results for more images of bar charts on our demo page BarChar-

tAnalyzer.

For error analysis, we perform a qualitative comparison of the source image with the

reconstructed chart, as these images are downloaded from the web and do not have the

source data for comparison. We can also look through the final data extracted post-OCR

to get a better idea.

For bar charts, we test our algorithm using different types of bars, i.e., simple,

grouped, and stacked bar charts. The orientation of charts impacts the rule-based ex-

traction method; so, we also include both horizontal and vertical bar in our test cases.

For scatter plots, we have used plots having scatterpoint of different sizes. The

variation in size allows us to see the various patterns depicted by the degenrate points

for a small geometric object. The images of both bar and scatter plots are of high

quality.

5.5.1 Results

The degenerate points in the case of grouped bar chart show the same patterns as a

simple bar near the corners of the bar/column as shown in Figure FC5.4, row B, (ii).

Whereas, for a stacked bar chart, tensor field analysis provides degenerate points at the

corners of the bar as well as at the junction of each stack as shown in Figure FC5.4, row

B, (iii). This establishes the association of tensor voting with perceptual grouping.

We observe that the extracted values after scaling pixel space data to original dimen-

sion using OCR have numerical precision errors predominantly. Hence, to compare the

difference between the extracted values and the source values, we compute the normal-

ized Mean Absolute Error (nMAE), and the Mean Absolute Percentage Error (MAPE)

for the synthetic images, which are bounded in [0,1]. MAPE is commonly reported

https://gvcl.github.io/
https://gvcl.github.io/

59

C
ha

rt
 Im

ag
e

A

B

C

D

 T
S
(G

ly
ph

)
T

v-
ad

(G
ly

ph
)

T
v-

ad
 S

al
ie

n
cy

 M
ap

Cl=0.0
Cp=1.0

Cl=1.0
Cp=0.0

bc-2bc-1 bc-3

Figure FC5.2: The tensor fields computed from images of charts using our approach. (A) Input
images of multi-series bar charts. Tensor fields computed on the images, visualized using glyphs
and colored by saliency values, include (B) structure tensor Ts, and (C) tensor voting field of Ts

after anisotropic diffusion Tv-ad. (D) The saliency values of Tv-ad visualized using dot plots. The
coolwarm color mapping associated with corresponding Cl and Cp saliency values, used in the
visualizations, is shown in the colorbar.

60

C
ha

rt
 Im

ag
e

A

B

C

D

 T
S
(G

ly
ph

)
T

v-
ad

(G
ly

ph
)

T
v-

ad
 S

al
ie

n
cy

 M
ap

Cl=0.0
Cp=1.0

Cl=1.0
Cp=0.0

sp-3sp-1 sp-2

Figure FC5.3: The tensor fields computed from images of charts using our approach. (A) Input
images of multi-class scatter plots. Tensor fields computed on the images, visualized using
glyphs and colored by saliency values, include (B) structure tensor Ts, and (C) tensor voting
field of Ts after anisotropic diffusion Tv-ad. (D) The saliency values of Tv-ad visualized using dot
plots. The coolwarm color mapping associated with corresponding Cl and Cp saliency values,
used in the visualizations, is shown in the colorbar.

61

C
ha

rt
 Im

ag
e

A

B

D
eg

en
e

ra
te

 P
oi

nt
s

C

R
ec

on
st

ru
ct

ed
 C

ha
rt

bc-3bc-1 bc-2

Figure FC5.4: Use of degenerate points in Tv-ad field for data extraction from images of multi-
series bar charts, and validated using chart reconstruction. (A) Input images of charts. (B)
Visualization of the pixels corresponding to degenerate points based on Cl and Cp values of Tv-ad
at the corners of bar/bin for and near the center of scatterpoint, (C) The reconstructed charts from
the extracted data for the input images.

62

Figure FC5.5: Reconstruction of synthetically generated bar chart images with their error evalu-
ation in normalized mean absolute error (nMAE) and mean absolute percentage error (MAPE).

63

in a percentage format. MAPE is augmented in the case of missing extracted data in

grouped bar charts Figure FC5.5(ii) and stacked bar charts Figure FC5.5(iii) owing to

relatively short bars or bar segments. For N data items with source data value xi and its

corresponding extracted value x(e)i ,

nMAE=

N
∑

i=1
|xi−xe

i |

N
∑

i=1
xi

; and MAPE = 1
N .

N
∑

i=1

∣∣∣∣xi−x(e)i
x

∣∣∣∣.
In our representative examples in Figure FC5.5, we observe relatively low nMAE val-

ues. Histograms are not included in this analysis as the source and extracted data in its

case is a frequency table, different from a data table in the case of bar charts.

C
ha

rt
 Im

ag
e

A

B

D
eg

en
e

ra
te

 P
oi

nt
s

C

R
ec

on
st

ru
ct

ed
 C

ha
rt

sp-3sp-1 sp-2

Figure FC5.6: Use of degenerate points in Tv-ad field for data extraction from images of multi-
class scatter plots, and validated using chart reconstruction. (A) Input images of charts. (B)
Visualization of the pixels corresponding to degenerate points based on Cl and Cp values of Tv-ad
at the corners of bar/bin for and near the center of scatterpoint, (C) The reconstructed charts from
the extracted data for the input images.

As Figures FC5.3–FC5.6 show our workflow for scatter plot images generated syn-

thetically, we have also performed experiments on images of scatter plots downloaded

from the internet. Figure FC5.7 shows the different steps for both simple and multi-class

64

Figure FC5.7: The tensor field computation steps for scatter plot images downloaded from
internet (A) Input images of scatter plots. (B) Visualization of the pixels corresponding to
degenerate points based on Cl and Cp values of Tv-ad near the center of scatterpoint, (C) The
reconstructed charts from the extracted data for the input images.

scatter plots. We observe that the overlapping points in scatter plots do not get extracted

accurately, as only perceptually visible scatter points are extracted. At the same time,

we observe that the human eye can detect partial overlaps; however, our tensor field is

not able to extract the overlapping points as multiple points. Hence, we observe omis-

sion errors. The degenerate points in case of overlapping points in simple scatter do

not provide any information on the points belonging to different data entries. However,

overlapping points that belong to different classes provide two sets of degenerate points

that are distinguishable by distance during our visual analysis step.

The degenerate points in the case of scatter plots show similar patterns for the same-

sized scatterpoints. The patterns or arrangement of these degenerate points for a bigger

scatterpoint are slightly different. This can be compared in Figure FC5.6, row B, (i) and

(iii) where image (i) is plotted with default size provided by matplotlib library whereas

image (iii) is generated with a scatterpoint size 20.

65

In terms of quantifying the error in our data extraction, we use synthetic datasets

for both simple and multi-class scatter plots. We plot the data using matplotlib, a

Python plotting library, extract the data table and reconstruct the image. We compute

the Pearson’s correlation of synthetic datasets and their extracted counterparts. We

have reported the differences in correlation coefficient r for simple scatter plots in Fig-

ure FC5.8, and the same for multi-class scatter plots in Figure FC5.9. We observe that

the errors in correlation coefficients are proportional to the density of scatter points in

the plot. In the case of multi-class scatter plots, the errors in correlation coefficients are

additionally proportional to the density of points in regions where both classes overlap

in the image. We observe that comparing correlation coefficients in original and recon-

structed charts helps in comparing the overall appearance of the charts, which is more

significant for text summarization than exact data extraction.

Figure FC5.8: Correlation coefficient (r) values in both original and reconstructed images of
simple scatter plots.

However, similar to simple scatter plots, our data extraction algorithm for multi-

class scatter plots suffer from omission errors. If the scatterpoints that belong to the

same class overlap, the data extraction process will not be able to distinguish all the

points. Thus, the consequent exclusion of the obscured points leads to omission errors.

Omission errors in scatter plots lead to errors in the correlation coefficient computed

66

Figure FC5.9: Correlation coefficient (r) values in both original and reconstructed images of
multi-class scatter plots.

from the extracted data table. For such cases of overlapping scatterpoints of the same

class, a component/model that can capture repetitive patterns like scatterpoint shape

needs to be implemented to capture overlapping scatterpoints that do not plot standard

patterns on images.

We compare our work with Scatteract where the data extraction success rate is max-

imum of 89.2% with F1 score > 0.8. In our experiments, we get a continuous uni-

form distribution for F1 ≥ 0.4, unlike Scatteract, i.e. very low and very high values.

Hence, we relax the constraint appropriately to F1 > 0.5, then Scatteract with the use of

RANSAC regression for mapping pixel-to-chart coordinates has 89.5% success rate for

simple scatterplots for procedurally generated ones, 78% for simple scatterplots from

the web, and with other regression methods has 70.3% at its best. In comparison, our

method has 73.3% success rate for simple scatterplots, which improves to 93.3% for

F1 > 0.4. We can likewise improve the success rate of our method by refining the pixel-

to-chart coordinate mapping using RANSAC regression.

67

CHAPTER 6

DISCUSSION

Through this chapter, we want to address the limitations as well as the different

factors that influence the results of our tensor field computation and analysis. As tensor

voting is used for perceptual grouping, we experiment with CIE-Lab color space for

tensor field computation. We also try to cover various aspects of the design space in

our experiments. As all our tensor fields at each pixel are dependent on neighborhood

changes, it becomes important to explore the various patterns that occur as a result of a

change in either geometry of the object or the plotting mechanism used to generate the

object.

6.1 Object Geometry

Our results, in Figure FC3.6, demonstrate the impact of the tensor field computa-

tion. The thinner bar generates clusters at a very small distance; hence, the clustering

parameters need to be fine-tuned for such cases.

The variation in object geometry in the case of scatter plots is introduced based on

either the scatterpoint size or shape. Hence, We have studied the influence of the choice

of glyph/point size and shape in scatter plots listed in Figure FC6.1. The shapes cover

commonly used representations for scatterpoints, including triangle, square and stan-

68

A

B

Chart
Image

Tv-ad
Slncy.
Map

Cl=1.0
Cp=0.0

Cl=0.0
Cp=1.0

sp-markwith borderwithout border

Figure FC6.1: The impact of border of bins in histograms, and scatter point (glyph) size
and shape in scatter plots in our tensor field computation. We consider the following cases
of histograms: (left) with the border and (middle) without the border on bins in a histogram;
and (right) different glyph shapes and sizes used in scatter plots. The source images are in
(A), and the saliency map visualization of the tensor field Tv-ad is in (B). The coolwarm color
mapping associated with corresponding Cl and Cp saliency values, used in the visualizations, is
shown in the colorbar.

dard circle/point representation. We also check the impact of object size in the case of

scatterpoints. In the visualization domain, the use of both very small and very large

scatterpoints is discouraged. Hence, it is advised to use a moderate-sized scatterpoint/-

mark for data encoding in any visualizations. All scatterpoint shapes in Figure FC6.1,

sp-mark have degenerate points; however, the distribution of these clusters is not uni-

form and differs for different shapes, unlike bar charts. Other than the scatterpoint

shape, the change in scatterpoint size also demonstrates the expected behavior of the

appearance of a homogeneous region in the glyph centroid. This homogeneous region

has zero tensors but is surrounded by degenerate points.

6.2 Border Thickness

To test another scenario covering different design spaces, we generate bars with

and without the border, as shown in Figure FC6.2. The border on each bar generates

generalized behavior of tensor fields and their degenerate points. The same pattern

69

A

B

Chart
Image

Tv-ad
Slncy.
Map

Cl=1.0
Cp=0.0

Cl=0.0
Cp=1.0

bc-border bc-simple

Figure FC6.2: The impact of border of bars in bar charts in our tensor field computation. We
consider the following cases of bar charts: (left) with the border and (right) without the border
on the bars. The source images are in (A), and the saliency map visualization of the tensor field
Tv-ad is in (B). The coolwarm color mapping associated with corresponding Cl and Cp saliency
values, used in the visualizations, is shown in the colorbar.

is expected in scatterpoints as well. However, the bars with formatted borders show

degenerate points at the baseline of the bar. We also test with the histogram creation

with bin having a thick border. Similarly, if bins in histograms are plotted with borders,

as shown in Figure FC6.1, the tensor field will generate weak degenerate points creating

a periphery to the thick border as well. This border in the case of bars is only visible

at the baseline because bars are not attached and have some spacing in between the

columns.

6.3 Color Space

The CIELab color space is a profoundly used color model for identifying perceptual

uniform colors where L* stands for perceptual lightness or luminance, and a* and b*

represent four unique colors of human vision: red, green, blue, and yellow. The CIELab

70

color model has been recommended for computing tensor voting for color image de-

noising [38]. We modify our tensor voting computation that originally is working on

RGB color components of the image to compute structure tensor using L*a*b* values.

We initially read the input image in RGB format and convert the image array to

L*a*b* space using the OpenCV library. The difference between tensor field com-

putation for RGB color image and L*a*b* color image comes from structure tensor

computation. We take individual red, green and blue channels having values between

[0,255], normalize the color values, and compute gradient tensor for all three chan-

nels individually for RGB image. For the CIE-Lab color image, we take account of all

three components of the color model, normalize the values individually and compute

the gradient.

The comparison of tensor field computation for both RGB and L*a*b* color models

for chart images can be referred from figure FC6.3. Comparing saliency visualization

for RGB and Lab color models proves that bars with different colors are identified bet-

ter. We can see that the CIE-Lab color model provides a more precise set of degenerate

points and eliminates weak critical points. Hence, this color model is more suitable for

our multi-series or multi-class charts as colors play an important role in distinguishing

chart objects belonging to one group/class. The change in the set of degenerate points

introduces the requirement to tune the clustering hyper-parameters for DBSCAN.

6.4 Limitations

The tensor field computation is pixel-based and is dependent on neighboring pix-

els; hence, it might fail to capture the insignificant change in height, as shown in Fig-

ure FC3.8, hg-2, hg-3 and, hg-4. Also, overlapping scatterpoints in scatter plots cause

type-2 errors shown in Figure FC3.7, row B that lead to data loss.

71

CIE-LabRGB

A

B

C

D

Color Image of
Bar Charts

Structure
Tensor (Ts)

Tensor Voting
(Tv-ad)

Saliency Map

Cp=0.0

Cl=0.0

Cl=1.0

Cp=1.0

Figure FC6.3: The impact of color model in our tensor field computation. We consider the
following cases of color image of grouped bar chart with color models: (left) RGB, and (right)
CIELAB. (A) Input images of different variants of simple scatter plots. Tensor fields computed
on the images, visualized using glyphs and colored by saliency values, include (B) structure
tensor Ts, and (C) tensor voting field of Ts after anisotropic diffusion Tv-ad. (D) The saliency
values of Tv-ad visualized using dot plots. The coolwarm color mapping associated with corre-
sponding Cl and Cp saliency values, used in the visualizations, is shown in the colorbar.

72

Our proposed method is limited to high-quality chart images, whereas the images

available on the web can belong to the category of either low-quality images or highly

processed images. In the case of such images, our tensor field computation would

generate false degenerate points around the edges of the object and would need a better

preprocessing for such pixelated images to get better results through our tensor fields.

Also, DBSCAN is one of the critical modules of the algorithm that needs its hyper-

parameters to be set for identifying clusters for a given dataset/image. The tensor field

visualization helps in identifying the values for eps and minPts. However, this requires

user interaction and attention to analyze the proximity of critical points to frame clus-

ters. Another module that needs user interaction is chart annotation. The annotation

process needs a precise selection of the bounding box to encapsulate the component

and provides erroneous results if not done properly during morphological operation and

legend color extraction.

Our chart classifiers provide a generalized model to identify the chart type and sub-

type of the given chart image. However, the chart type classification model is trained

with images of bar charts, scatter plots, line charts, and pie charts. Hence, the other

classes of charts, such as area charts, will not work with our classifier. Additionally,

the sub-type classifier fails to classify bar charts and others with unconventional char-

acteristics, e.g., hollow bars and handwritten text in bars. The texture/shaded bars are

still out of scope for our workflow. These limitations can be overcome by training the

model with other chart types as well as with chart images generated across various

design spaces.

73

CHAPTER 7

CONCLUSIONS

Automated chart interpretation model has been a topic of interest in recent times

due to the high demand for data-driven approaches. Several methods exist in the lit-

erature for chart digitization. These methods have certain constraints and limitations

on certain chart types. We introduce a semi-automated algorithm that performs data

extraction on a given chart image by exploiting local structure estimation. We take

the human perception of charts that identify chart canvas as the main component of

any chart visualization. We use the topology of positive semidefinite second-order ten-

sor fields generated using tensor voting after anisotropic diffusion on chart canvas for

data extraction. In this thesis, we discuss how degenerate points show specific patterns

owing to the geometry of chart objects. Our work mainly focuses on bar charts, scatter

plots, and histograms. While developing the framework, we also discuss the challenges,

limitations, and solutions suggested so far for similar goals. Our classifier is novel in

handling seven different bar chart sub-types. We use tensor field visualization as one

of the main components to analyze prominent features like corners in chart objects and

use the analysis for setting our clustering parameters.

Our current model performs data extraction with considerable accuracy and achieves

Levels-A1 and A2 in Kimura’s six-level scheme of statistical ability [3]. Our classifi-

cation model also covers the sub-type classification that helps in extending the data

74

extraction process for multi-series charts like grouped and stacked bars. In summary,

we propose a semi-automated algorithm for chart digitization using tensor field analysis

and deep-learning models.

7.1 Future Work

The limitations discussed in chapter 6 lists the future steps to be taken in order to

make a robust system for chart digitization. As a first step, our chart sub-type classifier

needs to be prepared to label multi-class scatter plots. The user-dependent task such as

hyperparameter-tuning of DBSCAN and chart annotation using LabelImg are required

to be improved for developing a completely automated system. The mapping between

pixel space data and the data space using the text detection model can be used for

text summary generation for the given chart. The final generated data can be used to

create different visualizations using color-blind friendly color schemes. Tactile diagram

generation or text-to-speech converter such as gtts in Python can be integrated with

our algorithm to provide assistance to visually impaired students. We also observe that

bars are salient objects in images of bar charts and hence, can be located using saliency

detection models. The extracted bar location can further be mapped with text detection

model results to generate extracted data table.

The tensor field computation model process each pixel and requires to be more

optimized for real-time computation. The dataset of annotated images can be used

as a training set for the object detection model to extract chart canvas efficiently. As

VGGNet has been famously used for object detection tasks, our goal is to improve our

classifier to automate the canvas extraction step to reduce the dependency on the user.

75

Bibliography

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR, vol.

abs/1409.4842, 2014, doi: https://doi.org/10.1109/CVPR.2015.7298594.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” in 3rd International Conference on Learning Representations,

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,

Y. Bengio and Y. LeCun, Eds., 2015.

[3] K. Aoyama and M. Stephens, “Graph Interpretation Aspects of Statistical Liter-

acy: A Japanese Perspective,” Mathematics Education Research Journal, vol. 15,

no. 3, pp. 207–225, 2003, doi: https://doi.org/10.1007/bf03217380.

[4] D. Jung, W. Kim, H. Song, J.-i. Hwang, B. Lee, B. Kim, and J. Seo, “Chart-

sense: Interactive data extraction from chart images,” in Proceedings of the 2017

CHI Conference on Human Factors in Computing Systems, ser. CHI ’17. New

York, NY, USA: Association for Computing Machinery, 2017, p. 6706–6717, doi:

https://doi.org/10.1145/3025453.3025957.

[5] J. Choi, S. Jung, D. G. Park, J. Choo, and N. Elmqvist, “Visualizing for the

non-visual: Enabling the visually impaired to use visualization,” in Computer

Graphics Forum, vol. 38, no. 3. Wiley Online Library, 2019, pp. 249–260, doi:

https://doi.org/10.1111/cgf.13686.

76

[6] M. Hegarty, “The cognitive science of visual-spatial displays: Implications

for design,” Topics in cognitive science, vol. 3, no. 3, pp. 446–474, 2011,

doi:https://doi.org/10.1111/j.1756-8765.2011.01150.x.

[7] W. Huang and C. L. Tan, “A system for understanding imaged infographics and

its applications,” in Proceedings of the 2007 ACM Symposium on Document Engi-

neering. ACM, 2007, pp. 9–18, doi: https://doi.org/10.1145/1284420.1284427.

[8] J. Poco and J. Heer, “Reverse-Engineering Visualizations: Recovering Visual En-

codings from Chart Images,” in Computer Graphics Forum, vol. 36, no. 3. Wiley

Online Library, 2017, pp. 353–363, doi: https://doi.org/10.1111/cgf.13193.

[9] P. M. Jones, C. D. Wickens, and S. J. Deutsch, “The display of mul-

tivariate information: An experimental study of an information integra-

tion task,” Human Performance, vol. 3, no. 1, pp. 1–17, 1990, doi:

https://doi.org/10.1207/s15327043hup0301 1.

[10] K. B. Bennett and J. M. Flach, “Graphical Displays: Implications for Divided

Attention, Focused Attention, and Problem Solving,” Human Factors, vol. 34,

no. 5, pp. 513–533, 1992, doi:https://doi.org/10.1177/001872089203400502.

[11] C. D. Wickens and C. M. Carswell, “The Proximity Compatibil-

ity Principle: Its Psychological Foundation and Relevance to Dis-

play Design,” Human Factors, vol. 37, no. 3, pp. 473–494, 1995,

doi:https://doi.org/10.1518/001872095779049408.

[12] Y. Liu, X. Lu, Y. Qin, Z. Tang, and J. Xu, “Review of Chart Recogni-

tion in Document Images,” in Visualization and Data Analysis 2013, vol.

8654. International Society for Optics and Photonics, 2013, p. 865410, doi:

https://doi.org/10.1117/12.2008467.

[13] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer, “Revision:

Automated Classification, Analysis and Redesign of Chart Images,” in Proceed-

77

ings of the 24th annual ACM symposium on User interface software and technol-

ogy. ACM, 2011, pp. 393–402, doi: https://doi.org/10.1145/2047196.2047247.

[14] L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stonebraker,

“Beagle: Automated Extraction and Interpretation of Visualizations from the

Web,” in Proceedings of the 2018 CHI Conference on Human Factors in Comput-

ing Systems. ACM, 2018, p. 594, doi: https://doi.org/10.1145/3173574.3174168.

[15] N. Siegel, Z. Horvitz, R. Levin, S. Divvala, and A. Farhadi, “FigureSeer: Parsing

result-figures in research papers,” in European Conference on Computer Vision.

Springer, 2016, pp. 664–680.

[16] A. Rohatgi, “Webplotdigitizer,” 2011.

[17] A. Baucom and C. Echanique, “ScatterScanner: Data Extraction and Chart

Restyling of Scatterplots,” 2013.

[18] M. Cliche, D. Rosenberg, D. Madeka, and C. Yee, “Scatteract: Automated ex-

traction of data from scatter plots,” in Joint European Conference on Machine

Learning and Knowledge Discovery in Databases. Springer, 2017, pp. 135–150,

doi: https://doi.org/10.1007/978-3-319-71249-9 9.

[19] R. A. Al-Zaidy and C. L. Giles, “Automatic Extraction of Data from Bar Charts,”

in Proceedings of the 8th international conference on knowledge capture, 2015,

pp. 1–4, doi: https://doi.org/10.1145/2815833.2816956.

[20] N. Methani, P. Ganguly, M. M. Khapra, and P. Kumar, “PlotQA:

Reasoning over Scientific Plots,” in The IEEE Winter Conference

on Applications of Computer Vision, 03 2020, pp. 1516–1525, doi:

https://doi.org/10.1109/wacv45572.2020.9093523.

78

[21] G. Medioni, M.-S. Lee, and C.-K. Tang, Computational Framework

for Segmentation and Grouping. USA: Elsevier Science Inc., 2000,

doi:https://doi.org/10.1016/b978-0-444-50353-4.x5000-8.

[22] R. Moreno, L. Pizarro, B. Burgeth, J. Weickert, M. A. Garcia, and D. Puig, “Adap-

tation of tensor voting to image structure estimation,” in New Developments in the

Visualization and Processing of Tensor Fields. Springer, 2012, pp. 29–50.

[23] T.-P. Wu, S.-K. Yeung, J. Jia, C.-K. Tang, and G. Medioni, “A Closed-

Form Solution to Tensor Voting: Theory and Applications,” arXiv preprint

arXiv:1601.04888, 2016, doi: https://doi.org/10.1109/tpami.2011.250.

[24] Y. Zhou and C. L. Tan, “Hough-based Model for Recognizing Bar Charts

in Document Images,” in Document Recognition and Retrieval VIII, vol.

4307. International Society for Optics and Photonics, 2000, pp. 333–340, doi:

https://doi.org/10.1117/12.410854.

[25] J. Wagemans, J. Feldman, S. Gepshtein, R. Kimchi, J. R. Pomerantz, P. A. Van der

Helm, and C. Van Leeuwen, “A Century of Gestalt Psychology in Visual Percep-

tion: II. Conceptual and Theoretical Foundations,” Psychological Bulletin, vol.

138, no. 6, p. 1218, 2012, doi: https://doi.org/10.1037/a0029334.

[26] G. Guy and G. Medioni, “Inferring Global Perceptual Contours from Lo-

cal Features,” in Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). IEEE, 1993, pp. 786–787, doi:

https://doi.org/10.1007/BF00144119.

[27] G. Medioni, C.-K. Tang, and M.-S. Lee, “Tensor Voting: Theory and Applica-

tions,” Proceedings of RFIA, Paris, France, vol. 3, 2000.

[28] J. Sreevalsan-Nair and B. Kumari, Local Geometric Descriptors for Multi-

Scale Probabilistic Point Classification of Airborne LiDAR Point Clouds.

79

Springer Cham, Mathematics and Visualization, 2017, pp. 175–200, doi:

https://doi.org/10.1007/978-3-319-61358-1 8.

[29] S. Wang, T. Hou, S. Li, Z. Su, and H. Qin, “Anisotropic Elliptic PDEs for Fea-

ture Classification,” Visualization and Computer Graphics, IEEE Transactions on,

vol. 19, no. 10, pp. 1606–1618, 2013, doi: 0.1109/TVCG.2013.60.

[30] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for

discovering clusters in large spatial databases with noise,” in Proceedings of the

Second International Conference on Knowledge Discovery and Data Mining, ser.

KDD’96. AAAI Press, 1996, p. 226–231.

[31] J. Sreevalsan-Nair, K. Dadhich, and S. C. Daggubati, “Tensor Fields for Data Ex-

traction from Chart Images: Bar Charts and Scatter Plots,” in Topological Meth-

ods in Visualization: Theory, Software and Applications (to appear), I. Hotz, T. B.

Masood, F. Sadlo, and J. Tierny, Eds. Springer-Verlag, 2020.

[32] Y. Rubner, L. J. Guibas, and C. Tomasi, “The earth mover’s distance, multi-

dimensional scaling, and color-based image retrieval,” in Proceedings of the ARPA

image understanding workshop, vol. 661, 1997, p. 668.

[33] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput-

ing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007, doi:

https://doi.org/10.1109/MCSE.2007.55.

[34] S. E. Kahou, A. Atkinson, V. Michalski, Á. Kádár, A. Trischler, and Y. Ben-

gio, “Figureqa: An annotated figure dataset for visual reasoning,” CoRR, vol.

abs/1710.07300, 2017.

[35] K. Dadhich, S. C. Daggubati, and J. Sreevalsan-Nair, “Scatterplotanalyzer: Dig-

itizing images of charts using tensor-based computational model,” in Com-

putational Science – ICCS 2021, M. Paszynski, D. Kranzlmüller, V. V.

80

Krzhizhanovskaya, J. J. Dongarra, and P. M. Sloot, Eds. Cham: Springer In-

ternational Publishing, 2021, pp. 70–83, doi: https://doi.org/10.1007/978-3-030-

77977-1 6.

[36] K. Dadhich, S. C. Daggubati, and J. Sreevalsan-Nair, “Barchartanalyzer: Digi-

tizing images of bar charts,” in Proceedings of the International Conference on

Image Processing and Vision Engineering, IMPROVE 2021, Online Streaming,

April 28-30, 2021, F. H. Imai, C. Distante, and S. Battiato, Eds. SCITEPRESS,

2021, pp. 17–28, doi: https://doi.org/10.5220/0010408300170028.

[37] Tzutalin, “Labelimg,” https://github.com/tzutalin/labelImg, 2015.

[38] R. Moreno, M. A. Garcia, D. Puig, and C. Julià, “Edge-preserving

color image denoising through tensor voting,” Computer Vision and

Image Understanding, vol. 115, no. 11, pp. 1536–1551, 2011, doi:

https://doi.org/10.1016/j.cviu.2011.07.005.

https://github.com/tzutalin/labelImg

	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Statement
	Contributions
	Thesis Structure

	Literature Survey
	Chart Interpretation
	Chart Classification
	Data Extraction
	Tensor Field Analysis

	Tensor Voting for Chart Images
	Structure Tensor
	Tensor Voting
	Anisotropic Diffusion
	Saliency Map Computation
	DBSCAN Clustering
	Data Extraction
	Our Proposed Algorithm
	Error Analysis for Data Extraction
	Visual Analysis of Tensor Fields
	Dot Plot with Color-map for Saliency Value
	Tensor Glyph Visualization
	Dot Plot for Degenerate Point Visualization

	Experiments
	Results
	Tensor Field Analysis
	Data Extraction
	Error Analysis

	Chart Image Classification and Annotation
	Chart Type Classification
	Dataset for Type Classification
	Preprocessing
	Image labelling

	Inception Model
	Architecture

	Limitations of Pre-trained Models

	VGGNet Classifier
	Architecture

	Chart Sub-type Classification
	Dataset

	Chart Annotation
	Experiments

	Multi-class and Multi-series Charts
	Grouped Bar Chart
	Stacked Bar Chart
	Multi-class Scatter Plot
	Data Extraction
	Legend Mapping

	Experiments
	Results

	Discussion
	Object Geometry
	Border Thickness
	Color Space
	Limitations

	Conclusions
	Future Work

	Bibliography

