Semantics-based reverse engineering of
data models from programs

Komondoor V Raghavan
IBM India Research Lab

(with G. Ramalingam, J. Field, et al)

1/51

Understanding legacy software

« Common scenario
- huge existing legacy code base
- building on top of existing code
- transforming existing code

- integrating legacy systems

« Legacy code can be surprisingly hard to work with

- lack of documentation and understanding of existing code

* Need tools to help understand legacy code

2/51

Reverse engineering data models

» (Goal: Reverse engineer a logical data model of a
given (legacy) program
- or Type Inference
- focused on weakly-typed languages like Cobol

« Understanding logical structure of data is key to
program understanding

* A logical data model can assist in common legacy
transformation and maintenance tasks

3/51

An example Cobol program — Data

declarations

01 CARD-TRANSACTION-REC_—
05 LOCATION-TYPE PIC X.
05 LOCATION-DETAILS PIC X(20).
05 CARD-INFO PIC X(19).
05 AMT PIC X(4).

01 “ATM-DETAILS.
05 ATM-ID PIC X(5).
05 ATM-ADDRESS X(12).
05 ATM-OWNER-ID PIC X(3

/

01 MERC-DETAILS.
05 MERCHANT-I IC X(8).
05 MERCHANT-ADDRESS PIC X(12).

01 CARD-NUM PIC X(16).
01 CASHBACK-RATE X(2).
01 CASHBACK X(3).

Outermost
variables

Inner
variables
(fields)

4751

Example program -- code

/1/
/2/
/3/
/4/
/3/
/6/
/7/
/8/
/9/
/10/
/11/
/12
/13/
/14/
/15/
/16/
/17/
/18/
/19/

READ CARD-TRANSACTION-REC.
IF LOCATION-TYPE = 'M'
MOVE LOCATION-DETAILS TO MERC-DETAILS
ELSE
MOVE LOCATION-DETAILS TO ATM-DETAILS
ENDIF
IF CARD-INFO[1:1] = 'C'
MOVE CARD-INFO[2:3] T
MOVE AMT*CASHB -RATE/100 TO CASHE
MOVE CARD-INFO[4:19] TO CARD-NUM<*—
WRITE CARD-NUM, CASHBACK TO CASHBACK-FILLC

CreditCdNum

|

ELSE DebitCdNum
MOVE CARD-INFO[2:17] TO CARD-NUM4’////’
ENDIF CreditCdNum | DebitCdNum

IF LOCATION-TYPE = 'M' ‘//’,,,/»ff””

WRITE MERCHANT-ID, AMT, CARD-NUM TO M-FILE
ELSE

WRITE ATM-ID, ATM-OWNER-ID, AMT,CARD-NUM TO A-FILE.
ENDIF

5751

An example Cobol program —
declarations

©1 CARD-TRANSACTION-REC.
05 LOCATION-TYPE PIC X.
—»05 LOCATION-DETAILS PIC X(20).

05 CARD-INFO PIC X(19)——

Data

AtmID ; C)wneﬁlg AMT—PIC)X(4) 'C".CreditTag ; CashBkRate ; CreditCdNum

MerchantlD |{'C'}:DebitTag ; DebitC

dNum : Unused

0T ATM-DETATLS.
05 ATM-ID PIC X(5).
05 ATM-ADDRESS X(12).
05 ATM-OWNER-ID PIC X(3).

01 MERC-DETAILS.
05 MERCHANT-ID PIC X(8).
05 MERCHANT-ADDRESS PIC X(12).

01 CARD-NUM PIC X(16).
01 CASHBACK-RATE X(2).
01 CASHBACK X(3).

6/51

Algorithm 1 [TACAS '05]

* A “guarded” (dependent) type system, involving
guarded type variables, records (concatenation),
and unions

- Example: (‘E":a 5 27 ;) |
({'E} 2% ;1)

7751

Algorithm 1 [TACAS '05]

* A “guarded” (dependent) type system, involving
guarded type variables, records (concatenation),
and unions

- Example: (‘E’: ; ; ;) |
({'E’}: ; ;

Formal characterization of a correct typing
solution for a program

Path-sensitive type inference algorithm

Improved accuracy; program-point specific
types

Computed solution helps in constructing class
diagram

8/51

Applications of guarded type system

* Program understanding

« Understanding impact of changes

* Program transformation

- Field expansion (e.g., Y2K expansion)

- Porting from weakly-typed languages to object-oriented
anguages

- Refactoring data declarations to make them better
reflect logical structure

9751

Key features of algorithm

» Based on dataflow analysis

- Dataflow fact at each point is a type for the entire
memory

- Each origin statement (READ, MOVE literal TO var) gets
a unique type variable

* Interprets predicates of the form

var == literal, var != literal

* Two key operations:
- Split: Replace ' by concatenation Bi;y X, i=j + k.
- Specialize: Replace d' by union 3] y'.

10/51

CARD-TRANSACTION-REC ATM- MERC -
DETAILS DETAILS

CASHBACK
-RATE

CASHBACK

/1/ READ CARD-TRANSACTION- REC

@]

| o [cprD-NUM

-
-
-
-
-
--

........

/2/ IF LOCAT ON-TYPE = 'M'

11/51

CARD-TRANSACTION-REC ATM- MERC -

DETAILS DETAILS

CASHBACK
-RATE

CASHBACK

CARD-NUM

N
w

/1/ READ CARD-TRANSACTION-REC. | 'M:d

@]

—n
N
w

/2/ IF LOCATION-TYPE = 'M®

12 /51

CARD-TRANSACTION-REC ATM- MERC - - o o
DETAILS | DETAILS| 2 [2. 2
/1/ READ CARD-TRANSACTION-REC. | | M:d' ' o
mye| g4
V
IMI

/4/ ELSE

!{le}:e1 f43

/5/ MOVE LOCATION-DETAILS TO ATM-DETAILS

13 /51

CARD-TRANSACTION-REC ATM- MERC -
DETAILS DETAILS

CASHBACK
-RATE

CASHBACK

CARD-NUM

3

/1/ READ CARD-TRANSACTION-REC. | 'M:d h20

™

{M}:e' {3
Md' | b 22
{M7}:e' {3
/2/ IF LOCATION-TYPE = 'M'
M| he 22
/3/ MOVE"IOCATIGN=BETAIL§~IO"MERC;RETAILS
M| he 2 h2e
/4/ ELSE
{M7}:e' {3

/5/ MOVE LOCATION-DETAIL§ TO ATM-DETAILS
v

14 /51

CARD - TRANSACTION - REC ATM- MERC- . .
DETAILS | DETAILS| 2 [2. 2

/1/ READ CARD-TRANSACTION-REC. | 'M'd’ h20 23

M}):e'| k2s

M’ 20 23

M):e!| ks

/2/ IF LOCATION-TYPE = 'M'

Md’ 20 23

/3/ MOVE LOCATION-DETAILS TO MERC-DETAILS

Md’ 20 23 20

/4/ ELSE

M)e!| k2

/5/ MOVE LOCATION-DETAILS TO;ATM-DETAILS

M}

j20

k23

j20

15751

CARD-TRANSACTION-REC ATM- MERC -

DETAILS DETAILS

CARD-NUM

-_‘i_h_-_i-)
/1/ READ CARD-TRANSACTION-REC. 'M'":d’ h2° ;
{'M'}:€e’ j20
M':d’ h2° 20
{'M"}:e' j?0 j20

/7/ IF CARDQENFO[l:l] = 'C'

16/51

CARD-TRANSACTION-REC ATM - MERC - = o o
DETAILS | DETAILS| 2 2. 2
/1/ READ CARD-TRANSACTION-REC. | 'M'd’ h20 |1 m?22
MYe!| o n 0?2
'M":d’ h20 | m22 h20
{'M'}:€e’ j2° n' 022 20

s

e

/7/ IF CARDQENFO[l:l] = 'C'

17751

CARD-TRANSACTION-REC ATM- MERC -

DETAILS | DETAILS| 2 g“: 2

/1/ READ CARD-TRANSACTION-REC. [Md'| o | cCp'| me
M}e!| cur | o
'M':t! u0 {'C}Yq'] v
; {'M'}w! X0 {'Chs'| y??

'M':d h0 'C':p! m? V

Mye'| e | ew | o2

'M"t! u2o {'C}:q'| Vv

{'M'}:w” x20 {'C'}:s! y22

/2/ IF LOCATION-TYPE = 'M'

18 /51

—— CRRD- [TION-REC ATM-DETAILS[MERC- SEEEEE
M prl m*
! ' : ! ' <’
{'M'}:e’ j° Cr 0% ©
Mt ko !{'C'}:q]‘ V22
{'M'}:w’ XZ\\ !{'C'}:s1‘ y?2
/2/ FN\OCATION-TYPE = 'M'
/3/ VE LOCATION-DETAILS TO MERC-DETAILS
/4/
/5/ E LOCATION-DETAILS TO ATM-DETAILS
/7/ D-INFO[1:1] = 'C'
/8/ CARD-INFO[2:3] TO CASHBACK-RATE
/9/ AMT*CASHBACK-RATE/100 TO CASHBACK
/10/ CARD-INFO[4:19] TO CARD-NUM
/11/ E CARD-NUM, CASHBACK TO CASHBACK-FILE
/12 LSE
/13/ MOVE CARD-INFO[2:17] TO CARD-NUM
/15/ ATION-TYPE = 'M'
/16/ E MERCHANT-ID, AMT, CARD-NUM TO M-FILE
/17/
/18/\/ TE ATM-ID, ATM-OWNER-ID, AMT,CARD-NUM TO A-FILE.
A 8 12 ot 1dn 4 8 12 16 2
M:d' [he| h2 | fcrpt [m gm, gm. hel h'2 |miamd ;
"mAN - 19511121 3] "o 2 16 41 15|12 ,; 8 16 2
{IMYe’| 17 17 1 ["Chrt [0,79, 71057 Iy [| s 0,719 z
TV I 8 12 Tall PP 16 2 4 8 12 16
Mt | Ut u I{'CalY, VLTV, ul u' |v.
e 1] % 51y 12w 3|irredy 161y v 4] % 5]x 2]« 3 16
{MFw | X7 (XS Chs Y, YT Ya | % 1% 7% Y

19/51

Correctness characterization

Inputja [[b c| |d||le f...

REPEAT

MOVE X TO ..

20/51

Characteristics of the solution

 Fow and path sensitive:

- Each occurrence of a variable is assigned a type
- Uses guards to ignore certain infeasible paths

« Determines variables of the same type, reveals
record structure within variables, as well as disjoint

unions
* Shortcomings:

- Dataflow facts are “unfactored”, potentially of
exponential size

21/51

/1/ READ CARD-TRANSACTION-REC.

|M|:d1 h18 - h212 lCl:p1 m12 m216 m34
|{|Ml}e1 j15 j212 j33 |C|:r1 012 0216 034
Mt N I O I I A A
!{IMI} :W1 X15 X212 X33 |{|C|}S~| y116 ‘ y22 y34
] [22: _
[1'. 1] 22] [22'.2'2]
M sy ='C
=C
true true true
[1:1]= [1:1]= [22:27]
M} M} = 1C}

22/51

Algorithm 2 [ICSE '06, WCRE '07]

1.Compute guarded dependences

2.Compute cuts at each data-source statement (i.e.,
READ statement).

3.0rganize the cuts as a cut-structure tree

|t is possible, but not desirable, to translate cut-structure
tree directly into a class hierarchy

4.Factor the cut-structure tree to capture better the
grouping/structure of sibling cuts

5.Translate cut-structure tree into a class hierarchy

23 /51

Step 1. Compute guarded
dependences

©1 CARD-TRANSACTION-REC.
05 LOCATION-TYPE PIC X.
05 LOCATION-DETAILS PIC X(20).
... 23 more bytes

©1 MERC-DETAILS.

05 MERCHANT-ID PIC X(8).

L
a.
>=
=
1
=
o
[r
-
<T
o

/1/ READ CARD-TRANSACTION-REC

/2/ IF LOCATION-TYPE = 'M'

/3/ MOVE LOCATION-DETAILS
TO MERC-DETAILS . LOCATION-DETAILS L—

/4/ ELSE ...

/15/ IF LOCATION-TYPE = 'M'

/16/ WRITE MERCHANT-ID,
AMOUNT, CARD-NUM TO M-FI

/17/ ELSE

Fonditional on LOCATION-TYPE='M

MERC-DETAILS

|

E MERCHANT-ID

TYPE

— LOCATION

24 /51

Step 2: Compute cuts at each data
source

CARD-TRANSACTION-REC

Jtrue » LOCATION-TYPE@/1/ - LOCATION-TYPE@/2/

|(LOCATION-TYPE="M"') » LOCATION-DETAILS@/1/—» LOCATION-DETAILS@/3/

- B »\LOCATION-DETAILS@/1/—» MERC-DETAILS@/3/

TmmTA'YFEW*W—\thﬂTWUEMTESUW — MERCHANT-ID@/16/

> -
1¢ 2 zgl 19 21 22 232425 4041 44

[1:1]=
: M’
[1:1]= | [1:1]= [2222 [22:22]
IM! ,Mr ']' =!Cl
='C [22:22
='C'\
true true
[1:1]=] [1:1]= |[1:1]= [22:22] [1:1]=
M3 MG | MY = i{'CY} MY}
25/ 51

Step 3: Organize cuts as tree

* There is Intuitively a containment relation among
cuts. Formalization:

- ¢/s range “wider” than c;s range and c;s predicate
“broader” than c;s predicate = c; contains c;

* \We broaden predicates of certain cuts such that

1) Containment imposes a tree structure (not a DAG)
» Allows generation of a single-inheritance class hierarchy
2) Between any two siblings C. and c, there Is no overlap;
l.e.:

 Either their ranges are non-overlapping, or their predicates are
non-overlapping

26/51

llustration of Step 3

e {/\/I' I 2,201' [='C'] line /16/
true true Flow to
line /18/

[1:1]=| [1:1)= |[1:1]= [22:22]

WM} MG MY = {C}

1) Cuts already form a tree structure. Good.

2) However, we have overlap problem!
* Intuitively, two overlapping cuts = both flow into some
variable reference,

* We would like a unique cut to flow into each variable ref.
271751

lllustration of Step 3

[1:1]= |[1:1)= [22: [22:22]
IMI 'Mr 2'2]' ='C'
='C
frue frue frue
[1:1]=| [1:1]= |[1:1]= [22:22]
WM} MY MY = i{'C}

28 /51

C, “8
[1:1]= | [1:1)= [22: [22:22]
er "M’ =2'2]' ="C'
true Cs true C, true
[1:1]=| [1:1)= |[1:1]= [22:22]
M} M} I{'M'} = i{'C?}
Ci0 Ci]

Approach: Turn each cut into a class, and each edge into a field-of relation.

. Classc {fl:c,, f2: c,, f3: c; ..., f8: g}, Class c,{}

Class c.{}

29/51

Co QQHQ&[QQ&HQD_SIEBIEQ%/
C, T c, | G C, Cs I €7 Cg
[1:1]= | [1:1)= [22: [22:22]
"M "M’ =2'2]' ="C'
true Cs true C, true
[1:1]=| [1:1)= |[1:1]= [22:22]
M} M} I{'M'} = i{'C?}
Ci0 Ci]

Approach: Turn each cut into a class, and each edge into a field-of relation.
. Classc {fl:c,, f2: c,, f3: c; ..., 18: Cg}, Class c.{}...., Class cqf}
« However, predicates are lost in translation, hence loss of precision: fields 2

and f3 ought not to co-exist!

30/51

Co (:‘Zlu:alella“(ul S“alesiy
C, C Co C Cs 7 Cg

9 4
[1:1]= | [1:1)= [22: [22:22]
er "M’ =2'2]' ="C'
true Cs true C, true
[1:1]=| [1:1)= |[1:1]= [22:22]
M} M} I{'M'} = i{'C?}
Ci0 Ci]

Approach: Turn each cut into a class, and each edge into a field-of relation.

Class c {f1: c,, f2: c,, f3: C; ..., 18: Cg}, Class c,{}...., Class cqf}

However, predicates are lost in translation, hence loss of precision: fields f2
and f3 ought not to co-exist!
No loss of precision when when all children have the same guard

31/51

Vertical partitioning

* Applicable only when all children have
mutually disjoint predicates

- parent corresponds to a base class
- children correspond to derived classes

32/351

Step 4. Factoring cut-structure tree

@ . . e
Generalized Horizontal Partitioning A

*Add edges between boxes with disjoint guards
* each connected component == a field

_ /33751

Step 4

field-1 field-2 |
[\

Generalized Horizontal Partitioning
Add edges between boxes with disjoint guards
* each connected component == a field

_ /34751

Step 4

@ N

Generalized Vertical Partitioning
Add edges between boxes with overlapping guards
e each connected component == a derived class

\ / 35/51

Step 4

derived

—

class-1

\

derived
class-2

—

Generalized Vertical Partitioning
Add edges between boxes with overlapping guards
e each connected component == a derived class

~

N

36/51

Step 4

@ . . e
Generalized Horizontal Partitioning

*Add edges between boxes with disjoint guards
e each connected component == a field

\

37/51

Step 4 on the running example ...

C] Cg CZ C4 C5 C7 C8
[1 . 1]= [1:1]= [2222 [22:22]
IM! IMI ']' ='C'
=C
) — H—’_
lrue C3 < true C6 Nrue
[1:7]=| 1:1= |[1:1]= [22:22]
M| ey [- cy
Cio Ci}
. H’-"/ .
~~ ~— — S— —~— — S~ ™~ ~— ~
fi 15 fs fa f5

387351

01 CARD-TRANSACTION-REC.
05 LOCATION-TYPE PIC X.

05 LOCATION-DETAILS PIC X(20).

05 CARD-INFO PIC X(19).

05 AMT PIC X(4). .-

—
e
-
-

e
-
-
-

CardTran

locType: LocType
location: LocDetails:,
s.cardType: CardType™
cardDtls: CardDetails|
amt: Amt '

N\

/7/ IF CARD-INFO[1:1] = 'C

/8/ MOVE CARD-INFO[2:3]
TO CASHBACK-RATE

CardDetalls

b

A

~
~

- How can we say if a given\"éashBR: CashBkRate

CreditCardDtls

OO modelis correct fora |num: CreditCdNum

given program?

DebitCairdDtls

num: DebitCdNum

- Executing the program
using an altered data
representation as
suggested by the OOM
does not affect the
observable behavior of the
program.

« See [ICSE '06] for
detalls

L

LocDetails
I 4 I
AtmDetails MercDetalls
atmld: AtmID mercld: MerchantID

atmOwner: OwnerlD

39/51

Details of Step 1: Computing

guarded dependences
e guard P> source ~>target

— source Is a pair memory range @ program-pt

— target is similar (however, we restrict ourself to variable
dereference sites)

— guard is a predicate on the state at source program-point.

 when guard Is true, value at source may reach target
(via some sequence of copies)

40/51

Guarded dependence analysis

 Guarded dependences

- capture transitive data-dependences

- capture conditions under which dependence is
Mmanifested

 Parametric guarded dependence computation

- parameterized by abstraction for guards

- can be computed in polynomial time for simple
(common type of) guards

41751

Transfer functions (without guards)

Statement S i [S] - 2Pri — 2P
WRITE Y© AOut. OutU{ Y ~~ d }
READ Y AOut. { ¥V ~~d U

{r~t|r~teOuandr € Y}

MOVE X To ¥*' | AOut. { X ~ dX.,Y ~dY } U
where y=[y; :ys] | {r~t|r~teOuArZY} U

and X =[x : 2] {r'~t|r~teOu,rcCy,
and r’ =71 —yy +x1 }
ASSUME pred AOut. Out U {r ~» d | pred contains

a data-reference d to a range r }

Backward dataflow analysis. Dataflow fact is: set of memory-range X

variable-reference-site. Meet operation: set union.

42 /51

Transfer functions (with guards)

Geps[t](OU) = {true 17 ~ d' |1/ d' € ailt]{}} U
{a,[tl(g)=r" ~d |grr-~deOut,
o~ d € anlt]{r ~~ d}}

ocg[t](g) = weakest pre-condition semantics; i.e.,

broadest condition before statement t that implies g
after statement .

43 /51

Ensuring polynomial-time analysis

e Atomic predicates
- variable = constant | variable [set-of-constants
-x=1, y# 2, zU {1,2}
« Each guard is
- a conjunction of atomic predicates
- (at most one per variable)

« Use Map(memory-range X variable-reference-site,
quard) as dataflow fact domain, instead of memory-
range X variable-reference-site X quard.

44 /51

Algorithm 2 : Contributions

An efficient approach to infer OO data models from
weakly-typed programs

Inferred models are provably compact and correct

Prototype implementation, and manual examination
of results

herefore, is a sound basis for program
understanding, migration, and transformation

45751

Related work

Canfora et al. [SEKE 96]

O’Callahan and Jackson [ICSE 97]

van Deursen and Moonen [WCRE 98, ...]
Eidorff et al. [POPL 99]

Ramalingam, Field, and Tip [POPL 99]
Balakrishnan and Reps [CC 04]

Distinguishing attributes of our work:
- path-sensitive analysis
— semantic correctness criterion of inferred OO model

46 /51

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Illustration of correctness characterization
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

