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Understanding legacy software

« Common scenario
- huge existing legacy code base
- building on top of existing code
- transforming existing code

- integrating legacy systems

« Legacy code can be surprisingly hard to work with

- lack of documentation and understanding of existing code

* Need tools to help understand legacy code
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Reverse engineering data models

» (Goal: Reverse engineer a logical data model of a
given (legacy) program
- or Type Inference
- focused on weakly-typed languages like Cobol

« Understanding logical structure of data is key to
program understanding

* A logical data model can assist in common legacy
transformation and maintenance tasks
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An example Cobol program — Data

declarations

01 CARD-TRANSACTION-REC_—
05 LOCATION-TYPE PIC X.
05 LOCATION-DETAILS PIC X(20).
05 CARD-INFO PIC X(19).
05 AMT PIC X(4).

01 “ATM-DETAILS.
05 ATM-ID PIC X(5).
05 ATM-ADDRESS X(12).
05 ATM-OWNER-ID PIC X(3

/

01 MERC-DETAILS.
05 MERCHANT-I IC X(8).
05 MERCHANT-ADDRESS PIC X(12).

01 CARD-NUM PIC X(16).
01 CASHBACK-RATE X(2).
01 CASHBACK X(3).

Outermost
variables

Inner
variables
(fields)
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Example program -- code

/1/
/2/
/3/
/4/
/3/
/6/
/7/
/8/
/9/
/10/
/11/
/12
/13/
/14/
/15/
/16/
/17/
/18/
/19/

READ CARD-TRANSACTION-REC.
IF LOCATION-TYPE = 'M'
MOVE LOCATION-DETAILS TO MERC-DETAILS
ELSE
MOVE LOCATION-DETAILS TO ATM-DETAILS
ENDIF
IF CARD-INFO[1:1] = 'C'
MOVE CARD-INFO[2:3] T
MOVE AMT*CASHB -RATE/100 TO CASHE
MOVE CARD-INFO[4:19] TO CARD-NUM<*—
WRITE CARD-NUM, CASHBACK TO CASHBACK-FILLC

CreditCdNum

|

ELSE DebitCdNum
MOVE CARD-INFO[2:17] TO CARD-NUM4’////’
ENDIF CreditCdNum | DebitCdNum

IF LOCATION-TYPE = 'M' ‘//’,,,/»ff””

WRITE MERCHANT-ID, AMT, CARD-NUM TO M-FILE
ELSE

WRITE ATM-ID, ATM-OWNER-ID, AMT,CARD-NUM TO A-FILE.
ENDIF
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An example Cobol program —
declarations

©1 CARD-TRANSACTION-REC.
05 LOCATION-TYPE PIC X.
—»05 LOCATION-DETAILS PIC X(20).

05 CARD-INFO PIC X(19)——

Data

AtmID ; C)wneﬁlg AMT—PIC)X(4) 'C".CreditTag ; CashBkRate ; CreditCdNum

MerchantlD |{'C'}:DebitTag ; DebitC

dNum : Unused

0T ATM-DETATLS.
05 ATM-ID PIC X(5).
05 ATM-ADDRESS X(12).
05 ATM-OWNER-ID PIC X(3).

01 MERC-DETAILS.
05 MERCHANT-ID PIC X(8).
05 MERCHANT-ADDRESS PIC X(12).

01 CARD-NUM PIC X(16).
01 CASHBACK-RATE X(2).
01 CASHBACK X(3).
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Algorithm 1 [TACAS '05]

* A “guarded” (dependent) type system, involving
guarded type variables, records (concatenation),
and unions

- Example: (‘E":a 5 27 ; ) |
({'E} 2% ;1)
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Algorithm 1 [TACAS '05]

* A “guarded” (dependent) type system, involving
guarded type variables, records (concatenation),
and unions

- Example: (‘E’: ; ; ; ) |
({'E’}: ; ;

Formal characterization of a correct typing
solution for a program

Path-sensitive type inference algorithm

Improved accuracy; program-point specific
types

Computed solution helps in constructing class
diagram
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Applications of guarded type system

* Program understanding

« Understanding impact of changes

* Program transformation

- Field expansion (e.g., Y2K expansion)

- Porting from weakly-typed languages to object-oriented
anguages

- Refactoring data declarations to make them better
reflect logical structure
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Key features of algorithm

» Based on dataflow analysis

- Dataflow fact at each point is a type for the entire
memory

- Each origin statement (READ, MOVE literal TO var) gets
a unique type variable

* Interprets predicates of the form

var == literal, var != literal

* Two key operations:
- Split: Replace ' by concatenation Bi;y X, i=j + k.
- Specialize: Replace d' by union 3] y'.
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CARD-TRANSACTION-REC ATM- MERC -
DETAILS DETAILS

CASHBACK
-RATE

CASHBACK

/1/ READ CARD-TRANSACTION- REC

@]

| o [cprD-NUM

-
-
-
-
-
--
----------------
........
--------

/2/ IF LOCAT ON-TYPE = 'M'
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CARD-TRANSACTION-REC ATM- MERC -

DETAILS DETAILS

CASHBACK
-RATE

CASHBACK

CARD-NUM

N
w

/1/ READ CARD-TRANSACTION-REC. | 'M:d

@]

—n
N
w

/2/ IF LOCATION-TYPE = 'M®
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CARD-TRANSACTION-REC ATM- MERC - - o o
DETAILS | DETAILS| 2 [ 2. 2
/1/ READ CARD-TRANSACTION-REC. | | M:d' ' o
mye| g4
V
IMI

/4/ ELSE

!{le}:e1 f43

/5/  MOVE LOCATION-DETAILS TO ATM-DETAILS
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CARD-TRANSACTION-REC ATM- MERC -
DETAILS DETAILS

CASHBACK
-RATE

CASHBACK

CARD-NUM

3

/1/ READ CARD-TRANSACTION-REC. | 'M:d h20

™

{M}:e' {3
Md' | b 22
{M7}:e' {3
/2/ IF LOCATION-TYPE = 'M'
M| he 22
/3/ MOVE"IOCATIGN=BETAIL§~IO"MERC;RETAILS
M| he 2 h2e
/4/ ELSE
{M7}:e' {3

/5/  MOVE LOCATION-DETAIL§ TO ATM-DETAILS
v
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CARD - TRANSACTION - REC ATM- MERC- . .
DETAILS | DETAILS| 2 [ 2. 2

/1/ READ CARD-TRANSACTION-REC. | 'M'd’ h20 23

M}):e'| k2s

M’ 20 23

M):e!| ks

/2/ IF LOCATION-TYPE = 'M'

Md’ 20 23

/3/ MOVE LOCATION-DETAILS TO MERC-DETAILS

Md’ 20 23 20

/4/ ELSE

M)e!| k2

/5/  MOVE LOCATION-DETAILS TO;ATM-DETAILS

M}

j20

k23

j20
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CARD-TRANSACTION-REC ATM- MERC -

DETAILS DETAILS

CARD-NUM

-_‘i_h_-_i-)
/1/ READ CARD-TRANSACTION-REC. 'M'":d’ h2° ;
{'M'}:€e’ j20
M':d’ h2° 20
{'M"}:e' j?0 j20

/7/ IF CARDQENFO[l:l] = 'C'
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CARD-TRANSACTION-REC ATM - MERC - = o o
DETAILS | DETAILS| 2 2. 2
/1/ READ CARD-TRANSACTION-REC. | 'M'd’ h20 |1 m?22
MYe!| o n 0?2
'M":d’ h20 | m22 h20
{'M'}:€e’ j2° n' 022 20

s

e

/7/ IF CARDQENFO[l:l] = 'C'
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CARD-TRANSACTION-REC ATM- MERC -

DETAILS | DETAILS| 2 g“: 2

/1/ READ CARD-TRANSACTION-REC. [Md'| o | cCp'| me
M}e!| cur | o
'M':t! u0 {'C}Yq'] v
; {'M'}w! X0 {'Chs'|  y??

'M':d h0 'C':p! m? V

Mye'| e | ew | o2

'M"t! u2o {'C}:q'| Vv

{'M'}:w” x20 {'C'}:s! y22

/2/ IF LOCATION-TYPE = 'M'
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—— CRRD- [TION-REC ATM-DETAILS[MERC- SEEEEE
M prl m*
! ' : ! ' <’
{'M'}:e’ j° Cr 0% ©
Mt ko !{'C'}:q]‘ V22
{'M'}:w’ XZ\\ !{'C'}:s1‘ y?2
/2/ FN\OCATION-TYPE = 'M'
/3/ VE LOCATION-DETAILS TO MERC-DETAILS
/4/
/5/ E LOCATION-DETAILS TO ATM-DETAILS
/7/ D-INFO[1:1] = 'C'
/8/ CARD-INFO[2:3] TO CASHBACK-RATE
/9/ AMT*CASHBACK-RATE/100 TO CASHBACK
/10/ CARD-INFO[4:19] TO CARD-NUM
/11/ E CARD-NUM, CASHBACK TO CASHBACK-FILE
/12 LSE
/13/ MOVE CARD-INFO[2:17] TO CARD-NUM
/15/ ATION-TYPE = 'M'
/16/ E MERCHANT-ID, AMT, CARD-NUM TO M-FILE
/17/
/18/\/ TE ATM-ID, ATM-OWNER-ID, AMT,CARD-NUM TO A-FILE.
A 8 12 ot 1dn 4 8 12 16 2
M:d' [ he| h2 | fcrpt [m gm, gm. hel h'2 |miamd ;
"mAN - 19511121 3] "o 2 16 41 15|12 ,; 8 16 2
{IMYe’| 17 17 1 [ "Chrt [0,79, 71057 Iy [ | s 0,719 z
TV I 8 12 Tall PP 16 2 4 8 12 16
Mt | Ut u I{'CalY, VLTV, ul u' |v.
e 1] % 51y 12w 3|irredy 161y v 4] % 5]x 2]« 3 16
{MFw | X7 (XS Chs Y, YT Ya | % 1% 7% Y
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Correctness characterization

Inputja [[b c| |d||le f...

REPEAT ....

MOVE X TO ..

20/51



Characteristics of the solution

 Fow and path sensitive:

- Each occurrence of a variable is assigned a type
- Uses guards to ignore certain infeasible paths

« Determines variables of the same type, reveals
record structure within variables, as well as disjoint

unions
* Shortcomings:

- Dataflow facts are “unfactored”, potentially of
exponential size
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/1/ READ CARD-TRANSACTION-REC.

|M|:d1 h18 - h212 lCl:p1 m12 m216 m34
|{|Ml}e1 j15 j212 j33 |C|:r1 012 0216 034
Mt N I O I I A A
!{IMI} :W1 X15 X212 X33 |{|C|}S~| y116 ‘ y22 y34
] [22: _
[ 1'. 1 ] 22] [22'.2'2]
M sy ='C
=C
true true true
[1:1]= [1:1]= [22:27]
M} M} = 1C}
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Algorithm 2 [ICSE '06, WCRE '07]

1.Compute guarded dependences

2.Compute cuts at each data-source statement (i.e.,
READ statement).

3.0rganize the cuts as a cut-structure tree

|t is possible, but not desirable, to translate cut-structure
tree directly into a class hierarchy

4.Factor the cut-structure tree to capture better the
grouping/structure of sibling cuts

5.Translate cut-structure tree into a class hierarchy
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Step 1. Compute guarded
dependences

©1 CARD-TRANSACTION-REC.
05 LOCATION-TYPE PIC X.
05 LOCATION-DETAILS PIC X(20).
... 23 more bytes

©1 MERC-DETAILS.

05 MERCHANT-ID PIC X(8).

L
a.
>=
=
1
=
o
[r
-
<T
o

/1/ READ CARD-TRANSACTION-REC

/2/ IF LOCATION-TYPE = 'M'

/3/  MOVE LOCATION-DETAILS
TO MERC-DETAILS . LOCATION-DETAILS L—

/4/ ELSE ...

/15/ IF LOCATION-TYPE = 'M'

/16/  WRITE MERCHANT-ID,
AMOUNT, CARD-NUM TO M-FI

/17/ ELSE

Fonditional on LOCATION-TYPE='M

MERC-DETAILS

|

E MERCHANT-ID

TYPE

— LOCATION
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Step 2: Compute cuts at each data
source

CARD-TRANSACTION-REC

Jtrue » LOCATION-TYPE@/1/ - LOCATION-TYPE@/2/

|(LOCATION-TYPE="M"') » LOCATION-DETAILS@/1/—» LOCATION-DETAILS@/3/

- B »\LOCATION-DETAILS@/1/—» MERC-DETAILS@/3/

TmmTA'YFEW*W—\thﬂTWUEMTESUW — MERCHANT-ID@/16/

> -
1¢ 2 zgl 19 21 22 232425 4041 44

[1:1]=
: M’
[1:1]= | [1:1]= [2222 [22:22]
IM! ,Mr ']' =!Cl
='C [22:22
='C'\
true true
[1:1]=] [1:1]= |[1:1]= [22:22] [1:1]=
M3 MG | MY = i{'CY} MY}
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Step 3: Organize cuts as tree

* There is Intuitively a containment relation among
cuts. Formalization:

- ¢/s range “wider” than c;s range and c;s predicate
“broader” than c;s predicate = c; contains c;

* \We broaden predicates of certain cuts such that

1) Containment imposes a tree structure (not a DAG)
» Allows generation of a single-inheritance class hierarchy
2) Between any two siblings C. and c, there Is no overlap;
l.e.:

 Either their ranges are non-overlapping, or their predicates are
non-overlapping
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llustration of Step 3

e {/\/I' I 2,201' [='C'] line /16/
true true Flow to
line /18/

[1:1]=| [1:1)= |[1:1]= [22:22]

WM} MG MY = {C}

1) Cuts already form a tree structure. Good.

2) However, we have overlap problem!
* Intuitively, two overlapping cuts = both flow into some
variable reference,

* We would like a unique cut to flow into each variable ref.
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lllustration of Step 3

[1:1]= |[1:1)= [22: [22:22]
IMI 'Mr 2'2]' ='C'
='C
frue frue frue
[1:1]=| [1:1]= |[1:1]= [22:22]
WM} MY MY = i{'C}
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C, “8
[1:1]= | [1:1)= [22: [22:22]
er "M’ =2'2]' ="C'
true Cs true C, true
[1:1]=| [1:1)= |[1:1]= [22:22]
M} M} I{'M'} = i{'C?}
Ci0 Ci]

Approach: Turn each cut into a class, and each edge into a field-of relation.

. Classc {fl:c,, f2: c,, f3: c; ..., f8: g}, Class c,{}

Class c.{}
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Co QQHQ&[QQ&HQD_SIEBIEQ%/
C, T c, | G C, Cs I €7 Cg
[1:1]= | [1:1)= [22: [22:22]
"M "M’ =2'2]' ="C'
true Cs true C, true
[1:1]=| [1:1)= |[1:1]= [22:22]
M} M} I{'M'} = i{'C?}
Ci0 Ci]

Approach: Turn each cut into a class, and each edge into a field-of relation.
. Classc {fl:c,, f2: c,, f3: c; ..., 18: Cg}, Class c.{}...., Class cqf}
« However, predicates are lost in translation, hence loss of precision: fields 2

and f3 ought not to co-exist!
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Co (:‘Zlu:alella“(ul S“alesiy
C, C Co C Cs 7 Cg

9 4
[1:1]= | [1:1)= [22: [22:22]
er "M’ =2'2]' ="C'
true Cs true C, true
[1:1]=| [1:1)= |[1:1]= [22:22]
M} M} I{'M'} = i{'C?}
Ci0 Ci]

Approach: Turn each cut into a class, and each edge into a field-of relation.

Class c {f1: c,, f2: c,, f3: C; ..., 18: Cg}, Class c,{}...., Class cqf}

However, predicates are lost in translation, hence loss of precision: fields f2
and f3 ought not to co-exist!
No loss of precision when when all children have the same guard
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Vertical partitioning

* Applicable only when all children have
mutually disjoint predicates

- parent corresponds to a base class
- children correspond to derived classes
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Step 4. Factoring cut-structure tree

@ . . e
Generalized Horizontal Partitioning A

*Add edges between boxes with disjoint guards
* each connected component == a field
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Step 4

field-1 field-2 |
[ \

Generalized Horizontal Partitioning
Add edges between boxes with disjoint guards
* each connected component == a field

\_ /34751




Step 4

@ N

Generalized Vertical Partitioning
Add edges between boxes with overlapping guards
e each connected component == a derived class

\ / 35/51




Step 4

derived

—

class-1

\

derived
class-2

—

Generalized Vertical Partitioning
Add edges between boxes with overlapping guards
e each connected component == a derived class

~

N

36/51



Step 4

@ . . e
Generalized Horizontal Partitioning

*Add edges between boxes with disjoint guards
e each connected component == a field

\
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Step 4 on the running example ...

C] Cg CZ C4 C5 C7 C8
[1 . 1]= [1:1]= [2222 [22:22]
IM! IMI ' ]' ='C'
=C
) — H—’_
lrue C3 < true C6 Nrue
[1:7]=| 1:1= |[1:1]= [22:22]
M| ey [ - cy
Cio Ci}
. H’-"/ .
~~ ~— — S— —~— — S~ ™~ ~— ~
fi 15 fs fa f5
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01 CARD-TRANSACTION-REC.
05 LOCATION-TYPE PIC X.

05 LOCATION-DETAILS PIC X(20).

05 CARD-INFO PIC X(19).

05 AMT PIC X(4). .-

—
e
-
-

e
-
-
-

CardTran

locType: LocType
location: LocDetails:,
s.cardType: CardType™
cardDtls: CardDetails|
amt: Amt '

N\

/7/ IF CARD-INFO[1:1] = 'C

/8/ MOVE CARD-INFO[2:3]
TO CASHBACK-RATE

CardDetalls

b

A

~
~

- How can we say if a given\"éashBR: CashBkRate

CreditCardDtls

OO modelis correct fora |num: CreditCdNum

given program?

DebitCairdDtls

num: DebitCdNum

- Executing the program
using an altered data
representation as
suggested by the OOM
does not affect the
observable behavior of the
program.

« See [ICSE '06] for
detalls

L

LocDetails
I 4 I
AtmDetails MercDetalls
atmld: AtmID mercld: MerchantID

atmOwner: OwnerlD

39/51



Details of Step 1: Computing

guarded dependences
e guard P> source ~>target

— source Is a pair memory range @ program-pt

— target is similar (however, we restrict ourself to variable
dereference sites)

— guard is a predicate on the state at source program-point.

 when guard Is true, value at source may reach target
(via some sequence of copies)
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Guarded dependence analysis

 Guarded dependences

- capture transitive data-dependences

- capture conditions under which dependence is
Mmanifested

 Parametric guarded dependence computation

- parameterized by abstraction for guards

- can be computed in polynomial time for simple
(common type of) guards
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Transfer functions (without guards)

Statement S i [S] - 2Pri — 2P
WRITE Y© AOut. OutU{ Y ~~ d }
READ Y AOut. { ¥V ~~d U

{r~t|r~teOuandr € Y}

MOVE X To ¥*' | AOut. { X ~ dX.,Y ~dY } U
where y=[y; :ys] | {r~t|r~teOuArZY} U

and X =[x : 2] {r'~t|r~teOu,rcCy,
and r’ =71 —yy +x1 }
ASSUME pred AOut. Out U {r ~» d | pred contains

a data-reference d to a range r }

Backward dataflow analysis. Dataflow fact is: set of memory-range X

variable-reference-site. Meet operation: set union.
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Transfer functions (with guards)

Geps[t](OU) = {true 17 ~ d' |1/ d' € ailt]{}} U
{a,[tl(g)=r" ~d |grr-~deOut,
o~ d € anlt]{r ~~ d}}

ocg[t](g) = weakest pre-condition semantics; i.e.,

broadest condition before statement t that implies g
after statement .
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Ensuring polynomial-time analysis

e Atomic predicates
- variable = constant | variable [set-of-constants
-x=1, y# 2, zU {1,2}
« Each guard is
- a conjunction of atomic predicates
- (at most one per variable)

« Use Map(memory-range X variable-reference-site,
quard) as dataflow fact domain, instead of memory-
range X variable-reference-site X quard.
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Algorithm 2 : Contributions

An efficient approach to infer OO data models from
weakly-typed programs

Inferred models are provably compact and correct

Prototype implementation, and manual examination
of results

herefore, is a sound basis for program
understanding, migration, and transformation

45751



Related work

Canfora et al. [SEKE 96]

O’Callahan and Jackson [ICSE 97]

van Deursen and Moonen [WCRE 98, ...]
Eidorff et al. [POPL 99]

Ramalingam, Field, and Tip [POPL 99]
Balakrishnan and Reps [CC 04]

Distinguishing attributes of our work:
- path-sensitive analysis
— semantic correctness criterion of inferred OO model
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