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Highly Connected Graphs




Connectedness — Why Is it important?

- Efficient Communication Networks — ‘well connected’
topologies achieve low latencies with as few links (cost?) as
possible

- Design of Rapidly Mixing Stochastic Processes — a random
walk on a well connected graph is likely to converge to its
stationary distribution quickly

- Pseudorandom Generators — random walk on a well
connected graph can be a very good source of pseudorandom
bits — ‘randomness extraction’

- Error Correcting Codes — a ‘richly connected’ graph between
messages and their codes (bipartite) is likely to lead to enough
candidates among the codes that are mutually separated by a
minimum distance (such as Hamming distance).



What Is ‘Connectedness’?

: Low ‘Diameter’ — largest of the minimum distances between
pairs of nodes

max (min l(pu,,))
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- High ‘Expansion’ — any subset of nodes of the graph has
‘enough’ edges going out to those not in the subset

{E(u,v) |ues,ves}

SV |S|<y N

Isoperimetric Number of the graph
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Spectral Graph Theory — Unifying Theme

» Deep relationships between the structural / combinatorial properties of a
graph and the algebraic properties of its adjacency matrix. For a d-
regular, n-vertex graph G:

- Adjacency graph A is symmetric, each row/column adding up to d
cd=2 =2 2...2 4,,_1 =-d is the eigen-spectrum of A

- Gis Connected iff 45 > 44; multiplicity of 44 is the number of connected
components of G

- Maximum size of a clique in G is at most 4;+1

- G is Bipartite iff ,,_; =-d; y(G) > 1 — 4ol (Chromatic Number)

| An-1l

(Hoffman, 1968)

- Maximum size of a cut in G is at most (% — ("/4)An_1)

(Delorme & Poljak, 1993)
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Spectral Gap and Connectivity

« A = (49— A4) is the spectral gap (4¢ is in factd)

log(n—-1)
log (d/ 31)

log(n—-2)/2 . .
o< +2 (bipartite
log(d/j_l) ( p )

Small § = small 44

- Diameter é < +1 (non-bipartite)

(Chung, 1989)
- Expansion Ratio h(G)
> < h(6) < V2d2

Large h(G) = large A = small 4,4
(Noga Alon & Milman, 1985)



Ramanujan Graphs

fA >2Vd— 1. (1 -0 (1/,ogzn))
(Noga Alon & Boppanna, 1991)

- For every integer d and ¢, there exists a constant c(¢,d) such that
every (n,d)-graph G has at least c.n eigenvalues greater than

2Vd —1 - €.
(J-.P.Serre, 1991)

- d-regular Graphs with 4; < 2vd — 1 are Ramanujan Graphs
(Lubotzky, Phillips and Sarnak, 1988)

- Ramanujan Graphs have the largest spectral gap possible and
therefore are the most ‘well connected’ (among d-regular graphs)



Examples of Ramanujan Graphs

- K4, K4 4 - are both Ramanujan

- Petersen Graph is Ramanujan

- Random d-regular graphs are
‘almost’ Ramanujan (Friedman 1991)

21 <2Vd—1+2logd + 0(1)
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Expander Graphs

+ Expander Graph Family: family of graphs G;,i € N such that:
- G; is a d-regular graph of size n;; {n;} is a monotonically growing
series that doesn’t grow too fast (say n;,; < n;?)
- Vi,h(G;) 2 €>0

- Example of an expander family (Super-Concentrators):
+ (n,m,d)-Superconcentrator is a bipartite graph with |L| =n, |R|=m and
every L-vertex has d neighbors.

- Known (Pinsker 1973): a random superconcentrator satisfies the
following with probability at least 0.9:

5d n
forevery SCL, I'(S§)={ 8 i 10d.

r(S) is the set of neighbors of S.



Properties of Expander Graphs

- Expander Families have § = O(logn)

- Expander Families are close to random: Expander
Mixing Lemma: VS, T C V,

E(S,T)| - “'S”""" < 2,/ISTIT]

n
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Margulis Construction (1973)

[ (xtyy)

xt(y+1),y)
(x,y £ x)
(xy+(x+1))

GZ,XZ,)=x1y) > >, mod m

Graphs with m? verticesand 2; < 8



Expander Families that are Ramanujan

- What we really need are families of expander graphs that
are Ramanujan (Ramanujan Families)

- Constructions exist now — but are highly non-trivial. Proofs
of ‘Ramanujan-ness’ have used a wide range of deep
mathematics — Representation Theory of Lie Groups,
Number Theory, Algebraic Geometry, ...



Examples of Ramanujan Families

» Lubotzky, Phillips and Sarnak (1988): V,, = Z,, for some
prime p, d = 3, x is connected to x+1, x-1 and x~! modulo
P.

- The proof crucially depended on the Ramanujan-
Petersson Conjecture (now a theorem): that the
Ramanujan Tau function,

Y1 T(M" = q[1.(1 — q™)** where q = e*™"*
11
satisfies: |z(p)| < 2pz for all primes p.

Hence the name Ramanujan Graphs.



Ramanujan Families of Arbitrary size?

- Construction of Ramanujan families for any n other than
primes and prime powers remains an important open
problem.
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