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Ramanujan Receives a degree at Cambridge

Figure: Ramanujan Receiving a Degree by Research



Discarded Work

Partial Manuscripts Originally Intended for
Papers Published by Ramanujan



Discarded Work

1 S. Ramanujan, On the product
∞∏
n=0

[
1 +

(
x

a + nd

)3
]

,

J. Indian Math. Soc. 7 (1915), 209–211.
2 S. Ramanujan, Some definite integrals, Mess. Math. 44

(1915), 10–18.
3 S. Ramanujan, Some definite integrals connected with Gauss’s

sums, Mess. Math. 44 (1915), 75–85.
4 S. Ramanujan, Some definite integrals, J. Indian

Math. Soc. 11 (1915), 81–87.
5 S. Ramanujan, On certain infinite series, Mess. Math. 45

(1916), 11–15.
6 S. Ramanujan, Some formulae in the analytic theory of

numbers, Mess. Math. 45 (1916), 81–84.
7 S. Ramanujan, On certain trigonometric sums and their

applications in the theory of numbers, Trans. Cambridge
Philos. Soc. 22 (1918), 259–276.



Unpublished Manuscripts

1 Three partial manuscripts on Diophantine Approximation

2 Three partial manuscripts on Fourier Analysis, Fourier
Transforms, and Mellin Transforms

3 Two Partial manuscripts on Euler’s constant

4 Two partial manuscripts on primes.

5 One wild manuscript on (mostly) analysis (from Ramanujan’s
early days in Kumbakonam?)



What We Do Not Discuss

1 Ramanujan’s Unpublished Manuscript on the partition and
tau functions

2 The completion of Ramanujan’s paper on highly composite
numbers

3 Lists (E.g., Identites for the Rogers–Ramanujan functions;
Euler Products)

4 Fragments

5 Letters from Ramanujan to Hardy from nursing homes

6 The Original Lost Notebook



Page 318 From the Lost Notebook

Figure: Page 318



Pages 318–321

S. Ramanujan, Some formulae in the analytic theory of numbers,
Mess. Math. 45 (1916), 81–84.

Entry (p. 318, formula (21); Corrected Version)

If α and β are positive numbers such that αβ = π2, then

π

2
cot(
√

wα) coth(
√

wβ) =
1

2w
+

1

2
log

β

α

+
∞∑

m=1

{
mα coth(mα)

w + m2α
+

mβ coth(mβ)

w −m2β

}
.

The expression 1
2 log(β/α) does not appear in the partial

manuscript.
“By the theory of residues it can be shown that”
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A Corollary That Does Not Follow

Entry (p. 320, formula (29))

If α and β are positive numbers such that αβ = π2, and if
σk(m) =

∑
d |m dk , then

∞∑
m=1

1

m(e2mα − 1)
−
∞∑

m=1

1

m(e2mβ − 1)

=
∞∑

m=1

σ−1(m)e−2mα −
∞∑

m=1

σ−1(m)e−2mβ =
1

4
log

α

β
− α− β

12
.



Dedekind Eta Function

f (−q) := f (−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2

= (q; q)∞ = q−1/24η(τ), q = e2πiτ

η(−1/τ) =
√
τ/i η(τ)
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Worry about Partial Fractions?

S. Ramanujan, On the product
∞∏
n=0

[
1 +

(
x

a + nd

)3
]

, J. Indian

Math. Soc. 7 (1915), 209–211.

“It can easily be shown by the theory of residues, that

1

16πα4
+
∞∑
n=1

n coth nπ

n4 + 4α4
=

π

8α2
· cosh 2πα + cos 2πα

cosh 2πα− cos 2πα
.”
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Page 196 From the Lost Notebook

Figure: Page 196



Very Interesting Formulas on Page 196

1 S. Ramanujan, Some definite integrals connected with Gauss’s
sums, Mess. Math. 44 (1915), 75–85.

2 S. Ramanujan, Some definite integrals, J. Indian
Math. Soc. 11 (1915), 81–87.

Entry (p. 196)

Let a be an even positive integer. Then

∞∑
n=1

cos

(
πn2

a

)
n2

=
π2

6
− π2√

a

a∑
r=1

r

a

(
1− r

a

)
sin

(
π

4
+
πr2

a

)
,

∞∑
n=1

sin

(
πn2

a

)
n2

= − π
2

√
a

a∑
r=1

r

a

(
1− r

a

)
cos

(
π

4
+
πr2

a

)
.
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∞∑
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sin
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√
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r
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a

)
cos

(
π
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a
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.



Page 196 Continued

B. C. Berndt, H. H. Chan, and Y. Tanigawa, Two Dirichlet series
evaluations found on page 196 of Ramanujan’s lost notebook,
Math. Proc. Cambridge Philos. Soc., to appear.

If we combine the different evaluations, we obtain the identities

π2

6a2
+
π2 cos(πa/4)

2a2
+
π2

a2

1
2a−1∑
j=1

cos

(
πj2

a

)
csc2

(
πj

a

)

=
π2

6
− π2√

a

a∑
r=1

r

a

(
1− r

a

)
sin

(
π

4
+
πr2

a

)
,

π2 sin(πa/4)

2a2
+
π2

a2

1
2a−1∑
j=1

sin

(
πj2

a

)
csc2

(
πj

a

)

= − π
2

√
a

a∑
r=1

r

a

(
1− r

a

)
cos

(
π

4
+
πr2

a

)
.



Page 196 Continued
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.



Page 196, Continued

Why are these formulas interesting?

1 On the left side we have “almost” a Gauss sum.
There is an “extra” factor

csc2
(
πj

a

)
2 On the right side we have “almost” a Gauss sum. We have an

“extra” factor of a polynomial of degree 2.

3 Have you ever seen a finite trigonometric identity involving
polynomials in the summands.

4 The polynomial is “almost” the second Bernoulli polynomial,
B2(x).
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More General Evaluations

Theorem

If r and a are even positive integers, then

∞∑
n=1

cos
(
πn2/a

)
nr

=
(−1)1+r/22r−1πr

r !
√

a

a−1∑
m=0

Br

(m

a

)
sin

(
πm2

a
+
π

4

)
and

∞∑
n=1

sin
(
πn2/a

)
nr

=
(−1)1+r/22r−1πr

r !
√

a

a−1∑
m=0

Br

(m

a

)
cos

(
πm2

a
+
π

4

)
.



Page 196 Continued

Entry (p. 196)

If a is an even positive integer, then

4π2

a3/2

{
1

8π
+
∞∑
n=1

n cos(πn2/a)

e2nπ − 1

}
−23/2π2

{
1

8πa
+
∞∑
n=1

n

e2nπa − 1

}

= − π2

a5/2

a∑
r=1

r(a− r) cos

(
πr2

a

)
.



Definite Integrals on Pages 190, 191

If αβ = π,

√
α

∫ ∞
0

e−(αx)
2

coshπx
dx =

√
β

∫ ∞
0

e−(βx)
2

coshπx
dx

If αβ = 2π,

√
α

∫ ∞
0

coshπx

cosh 2πx
e−(αx)

2
dx =

√
β

∫ ∞
0

coshπx

cosh 2πx
e−(βx)

2
dx

∞∑
n=0

(−1)n(n−1)/2

(2n + 1)s

E. C. Titchmarsh, Theory of Fourier Integrals
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E. C. Titchmarsh

Figure: E. C. Titchmarsh



Pages 270, 271

S. Ramanujan, On certain trigonometric sums and their
applications in the theory of numbers, Trans. Cambridge
Philos. Soc. 22 (1918), 259–276.

Entry (pp. 270, 271)

If s > 2, then

∞∑
n=1

σs−1(n)e−2πn =
Γ(s)

(2π)s
ζ(s)

1 + 2 cos
πs

4

∑ cos
(

s tan−1 µ−νµ+ν

)
(µ2 + ν2)

1
2 s


=

Γ(s)

(2π)s
ζ(s)

{
1 + 2 cos

πs

4

(
1

2
1
2 s

+
2 cos

(
s tan−1 1

3

)
5
1
2 s

+
2 cos

(
s tan−1 1

2

)
10

1
2 s

+
2 cos

(
s tan−1 1

5

)
13

1
2 s

+ · · ·

)}
,

where the sum is over all coprime positive integers µ and ν.



Pages 270, 271
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A Look at Page 277 in Ramanujan’s Second Notebook

Entry (Formula (9), Page 277)

∞∑
k=1

kn−1

e2πk − 1
=
|Bn|
2n

+
|Bn|

n
cos
(πn

4

){ 1

2n/2
+

2 cos(n tan−1 1
3)

5n/2

+
2 cos(n tan−1 1

3)

5n/2
+

2 cos(n tan−1 1
3)

5n/2
+ · · ·

}
,

where 2, 5, 10, 13,. . . are sum of squares of numbers that are prime
to each other.

∞∑
k=1

k4m+1

e2πk − 1
=

B4m+2

8m + 4
(n = 4m + 2).

J. W. L. Glaisher, 1889
A. Hurwitz, equivalent result, Ph.D. thesis, 1881
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Page 255

B. C. Berndt and P. Bialek, Five formulas of Ramanujan arising
from Eisenstein series, in Number Theory, K. Dilcher, ed., CMS
Conf. Proc., vol. 15, American Mathematical Society, Providence,
RI, 1995, pp. 67–86.

S. Ramanujan, On certain trigonometric sums and their
applications in the theory of numbers, Trans. Cambridge
Philos. Soc. 22 (1918), 259–276.

B. C. Berndt and P. Pongsriiam, Discarded Fragments from
Ramanujan’s Papers, Kubilius Memorial Volume, to appear.
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Page 255

Entry (p. 255)

1sσr (1) + 2sσr (2) + 3sσr (3) + · · ·+ nsσr (n)

lies between

ζ(−s)ζ(−r − s) +
n1+s

1 + s
ζ(1− r) +

n1+r+s

1 + r + s
ζ(1 + r)

+
1

2
nsζ(−r) +

1

2
nr+sζ(r) +

ns+(r+1)/2

1− r2
(1)

and

ζ(−s)ζ(−r − s) +
n1+s

1 + s
ζ(1− r) +

n1+r+s

1 + r + s
ζ(1 + r)− ns+(r+1)/2

1− r2

+
1

2
ns {2ζ(1− r)− ζ(−r)}+

1

2
nr+s {2ζ(1 + r)− ζ(r)} . (2)

(1) is correct; (2) is not.
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Page 255

We need some hypotheses and make some comments.

1 The error term must be o(1), as n→∞.

2

s + 1
2 r < 0, s + r < 1, and s < 1. (3)

3 For (1) to hold, we need either s > 0 or s + r > 0.

4 There are two “extra” terms in (2).

5 It is impossible to state an inequality in (2) without o(1) term.

6 We need to estimate ∑
k≤
√
n

{n

k

} 1

k r

(and a similar sum)



Page 255

Theorem

Let s and r be real numbers satisfying the inequalities (3). Then,
for n sufficiently large,

S(s, r) =
n∑

k=1

ksσr (k) ≤ ζ(−s)ζ(−s − r) +
ns+1

s + 1
ζ(1− r)

+
ns+r+1

s + r + 1
ζ(r + 1) +

ns+
1
2(r+1)

1− r2
+

ns

2
ζ(−r) +

ns+r

2
ζ(r),

provided that either s > 0 or s + r > 0, and

S(s, r) ≥ ζ(−s)ζ(−s − r) +
ns+1

s + 1
ζ(1− r) +

ns+r+1

s + r + 1
ζ(r + 1)

− ns+
1
2(r+1)

1− r2
− ns

2
ζ(−r)− ns+r

2
ζ(r) + o(1).



Unpublished Partial Manuscripts

Partial Manuscripts Never Completed by
Ramanujan



G. H. Hardy

Figure: G. H. Hardy



Page 262 From the Lost Notebook

Figure: Page 262



Pages 262–265

“Paper a little difficult to understand after the first page.”
(Gertrude Stanley)

“Odd problem. I don’t profess to know whether there’s much to
it.” (G. H. Hardy)

“Let us consider the maximum of

εm(1− εm)(1− 2εm) (4)

when εm is a positive proper fraction and m and mεm are positive
integers. Let vm be the maximum of (4).”
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Pages 262–265

Theorem

For all values of m,

vm ≥
m2 − 4

6m3

√
m2 − 1

3
.

and

vm ≤
(m2 − 1)

6m3

√
m2 + 2

3
,

with equality holding above when

εm =
1

m

(
m

2
−
√

m2 + 2

12

)
. (5)



Pages 262–265

Ramanujan seeks to determine the maximum value of k in order
that

vm = v2m = v3m = · · · = vkm. (6)



Pages 262–265

Theorem

As in (5), consider only those values of m for which

εm =
1

m

(
m

2
−
√

m2 + 2

12

)

is a rational number. Let k be the maximum value such that (6)
holds. Then

k 6>
[ x

m

]
=
√

3m2 + 6− 1,

where

1

x

(
x − 1

2
−
√

x2 − 1

12

)
=

1

m

(
m

2
−
√

m2 + 2

12

)
= εm.



Problem 784, J. Indian Math. Soc.

S. Ramanujan, Question 784, J. Indian Math. Soc. 8 (1916), 159.

If F (x) denotes the fractional part of x (e.g. F (π) = 0.14159 . . . ),
and if N is a positive integer, shew that

lim inf
N→∞

NF (N
√

2) =
1

2
√

2
, lim inf

N→∞
NF (N

√
3) =

1√
3
,

lim inf
N→∞

NF (N
√

5) =
1

2
√

5
, lim inf

N→∞
NF (N

√
6) =

1√
6
,

lim inf
N→∞

NF (N
√

7) =
3

2
√

7
,

lim inf
N→∞

N(log N)1−pF (Ne2/n) = 0, (7)

where n is any integer and p is any positive number; shew further
that in (7) p cannot be zero.
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Problem 784, J. Indian Math. Soc.

A. A. Krisnaswami Aiyangar, Partial solution to Question 784,
J. Indian Math. Soc. 18 (1929–30), 214–217.

T. Vijayaraghavan and G.N. Watson, Solution to Question 784,
J. Indian Math. Soc. 19 (1931), 12–23.

At the top of page 266, Hardy writes, “See Q. 784(ii) in volume.
This goes further,”
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Pages 266, 267

Entry

If a is any odd integer and ε > 0 is given, then there exist infinitely
many positive integers N such that

1 + [Ne2/a]− Ne2/a <
(1 + ε) log log N

4|a|N log N
.

Furthermore, given ε > 0, for all positive integers N sufficiently
large,

1 + [Ne2/a]− Ne2/a >
(1− ε) log log N

4|a|N log N
.

C. S. Davis, Rational approximation to e,
J. Austral. Math. Soc. 25 (1978), 497–502.
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Formulation Due to Davis

Theorem

Let a = ±2/t, where t is a positive integer, and set

c =

{
1/t, if t is even,

1/(4t), if t is odd.

Then, for each ε > 0, the inequality∣∣∣∣ea − p

q

∣∣∣∣ < (c + ε)
log log q

q2 log q

has an infinity of solutions in integers p, q. Furthermore, there
exists a number q′, depending only on ε and t, such that, for all
integers p, q, with q ≥ q′.∣∣∣∣ea − p

q

∣∣∣∣ > (c − ε) log log q

q2 log q
.



Sondow’s Conjecture

Theorem

Almost all partial sums of the Taylor series for e are not
convergents to the continued fraction of e.

J. Sondow and K. Schalm, Which partial sums of the Taylor series
for e are convergents to e? (and a link to the primes 2, 5 13, 37,
463). Part II. in Gems in Experimental Mathematics,
Contemp. Math., vol. 517, American Mathematical Society,
Providence, RI, 2010, pp. 349-363.

Sondow’s Conjecture. Only two partial sums of the Taylor series
for e coalesce with partial quotients of the continued fraction for e.

〈2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, . . . 〉 = 2+
1

1 +
1

2 +
1

1 +
1

1 +
1

4 + · · · .
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Sondow’s Conjecture, Cont.

Theorem

Fix a nonzero integer a. If we randomly choose one of the first n
convergents to the continued fraction of e2/a, the probability that
this convergent is also a partial sum of the Taylor series of e2/a is

Oa

(
log n

n

)
.

Theorem

Sondow’s Conjecture is true.

B. C. Berndt, S. Kim, and A. Zaharescu, Diophantine
Approximation of the Exponential Function and Sondow’s
Conjecture, submitted.
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A Transformation Formula, Notation

ξ(s) := (s − 1)π−
1
2 sΓ(1 + 1

2s)ζ(s).

Then Riemann’s Ξ-function is defined by

Ξ(t) := ξ(12 + it).

ψ(x) :=
Γ′(x)

Γ(x)
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A Transformation Formula

Entry

Define

φ(x) := ψ(x) +
1

2x
− log x . (8)

If α and β are positive numbers such that αβ = 1, then

√
α

{
γ − log(2πα)

2α
+
∞∑
n=1

φ(nα)

}
=
√
β

{
γ − log(2πβ)

2β
+
∞∑
n=1

φ(nβ)

}

= − 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos
(
1
2 t logα

)
1 + t2

dt, (9)

where γ denotes Euler’s constant and Ξ(x) denotes Riemann’s
Ξ-function.



Remarks on this Transformation Formula

1 Ramanujan writes that it “can be deduced from”

Entry

If n > 0,∫ ∞
0

(ψ(1 + x)− log x) cos(2πnx)dx =
1

2
(ψ(1 + n)− log n) .

(10)

2 He probably used the Poisson summation formula.

3 The Poisson summation formula could only be used to prove
the first equality.

4 The first equality in (8) established by Guinand in 1947.
“This formula also seems to have been overlooked.”



Remarks on this Transformation Formula

1 “Professor T. A. Brown tells me that he proved the
self-reciprocal property of ψ(1 + x)− log x some years ago,
and that he communicated the result to the late Professor
G. H. Hardy. Professor Hardy said that the result was also
given in a progress report to the University of Madras by
S. Ramanujan, but was not published elsewhere.”

2 For | arg z | < π, as z →∞,

ψ(z) ∼ log z − 1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · · .

3 Two proofs by BCB and Atul Dixit.

4 Dixit has found two further proofs, generalizations, and
analogues.



A. P. Guinand

Figure: A. P. Guinand



Generalization Due to Dixit

Theorem

Let ζ(z , a) denote the Hurwitz zeta function defined for a > 0 and
Re z > 1 by

ζ(z , a) =
∞∑
n=0

1

(n + a)z
.

If α and β are positive numbers such that αβ = 1, then for
Re z > 2 and 1 < c < Re z − 1,

α−z/2
∞∑
k=1

ζ

(
z , 1 +

k

α

)
= β−z/2

∞∑
k=1

ζ

(
z , 1 +

k

β

)

=
αz/2

2πiΓ(z)

∫ c+i∞

c−i∞
Γ(s)ζ(s)Γ(z − s)ζ(z − s)α−s ds



Generalization Due to Dixit, Cont.

Theorem

=
8(4π)(z−4)/2

Γ(z)

∫ ∞
0

Γ

(
z − 2 + it

4

)
Γ

(
z − 2− it

4

)
× Ξ

(
t + i(z − 1)

2

)
Ξ

(
t − i(z − 1)

2

)
cos
(
1
2 t logα

)
z2 + t2

dt,

where Ξ(t) is the Riemann Ξ-function.



Two Partial Manuscripts on Euler’s Constant

γ = 0.57721566490153286060651209008240243104215933593992 . . .

Entry (p. 274)

Let p, q, and r be positive. Then∫ 1

0

(
xp−1

1− x
− rxq−1

1− x r

)
dx = ψ(q/r)− ψ(p) + log r . (11)

Entry (p. 274)

Suppose that a, b, and c are positive with b > 1. Then∫ 1

0

(
xc−1

1− x
− bxbc−1

1− xb

) ∞∑
k=0

xabk dx = ψ
(a

b
+ c
)
− log

a

b
.
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Formulas for γ

Entry (p. 275)

We have ∫ 1

0

1

1 + x

∞∑
k=1

x2k dx = 1− γ,(a)

∫ 1

0

1 + 2x

1 + x + x2

∞∑
k=1

x3k dx = 1− γ,(b)

∫ 1

0

1 + 1
2

√
x

(1 +
√

x)(1 +
√

x + x)

∞∑
k=1

x (3/2)k dx = 1− γ.(c)



Formula From Second Manuscript

Entry (p. 276)

γ = log 2−
∞∑
n=1

2n

3n−1
2∑

k=
3n−1+1

2

1

(3k)3 − 3k
. (12)

B. C. Berndt and D. C. Bowman, Ramanujan’s short unpublished
manuscript on integrals and series related to Euler’s constant, in
Constructive, Experimental and Nonlinear Analysis, M. Thera, ed.,
American Mathematical Society, Providence, RI, 2000, pp. 19–27.

B. C. Berndt and T. Huber, A fragment on Euler’s constant in
Ramanujan’s lost notebook, South East Asian J. Math. and
Math. Sci. 6 (2008), 17–22.
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