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Topics in Ramanujan’s Lost Notebook
q-Series

(a)n := (a; q)n :=
n−1∏
j=0

(1− aqj)

(a)∞ := (a; q)∞ :=
∞∏
j=0

(1− aqj), |q| < 1

Theorem

(q-binomial theorem) For |q|, |z | < 1,

∞∑
n=0

(a; q)n
(q; q)n

zn =
(az ; q)∞
(z ; q)∞

.
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Theta Functions

Theta Functions

f (a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1.

ϕ(q) :=f (q, q) =
∞∑

n=−∞
qn2 ,

ψ(q) :=f (q, q3) =
∞∑
n=0

qn(n+1)/2,

f (−q) :=f (−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2.
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Ramanujan’s 1ψ1 summation

For any integer n,

(a)n := (a; q)n :=
(a; q)∞

(aqn; q)∞

Ramanujan’s 1ψ1 summation

1ψ1 (a; b; q, z) :=
∞∑

n=−∞

(a)n
(b)n

zn =
(q; q)∞(b/a; q)∞(az ; q)∞(q/(az); q)∞
(b; q)∞(q/a; q)∞(z ; q)∞(b/(az); q)∞

,

where |b/a| < |z | < 1.
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Partitions

Definition The partition function p(n) is defined to be the number
of ways a positive integer n can be written as a sum of positive
integers.

Example

p(4) = 5

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

1

(q; q)∞
=
∞∑

n1=0

qn1

∞∑
n2=0

q2n2 · · ·
∞∑

nk=0

qknk · · ·

=
∞∑
n=0

p(n)qn
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Partitions

p(5n + 4) ≡0 (mod 5),

p(7n + 5) ≡0 (mod 7),

p(11n + 6) ≡0 (mod 11).

Definition

The rank of a partition is the largest part minus the number of
parts.
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Rogers–Ramanujan–Slater Identities

Rogers–Ramanujan functions

G (q) :=
∞∑
n=0

qn2

(q; q)n
and H(q) :=

∞∑
n=0

qn(n+1)

(q; q)n

Rogers–Ramanujan Identities

G (q) =
1

(q; q5)∞(q4; q5)∞
and H(q) =

1

(q2; q5)∞(q3; q5)∞
.

Combinatorial Interpretation. The number of partitions of n
into parts differing by at least 2 is equal to the number of
partitions of n into parts congruent to either 1 or 4 modulo 5.
Example.

8 = 7 + 1 = 6 + 2 = 5 + 3

6 + 1 + 1 = 4 + 4 = 4 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
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q-continued fractions

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 + · · ·

= b0 +
a1
b1 +

a2
b2 +

a3
b3 +

a4
b4 + · · ·

Rogers–Ramanujan continued fraction

R(q) :=
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · · , |q| < 1
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q-continued fractions

Enigmatic Continued Fraction

(q2; q3)∞
(q; q3)∞

=
1

1 −
q

1 + q −
q3

1 + q2 −
q5

1 + q3 − · · · , |q| < 1.

Asymptotic Expansions of Continued Fractions

General Theorems
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Rogers–Ramanujan Continued Fraction

R(1) =
1

1 +
1

1 +
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1 +
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2
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Partitions

∞∑
n=0

qn2

(q; q)2n
=
∞∑
n=0

p(n)qn

∞∑
n=0

qn2

(−q; q)2n

The coefficient of qn is the number of partitions of n of even rank
minus the number of partitions of n of odd rank.
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Partitions

Entry (p. 14)

∞∑
n=0

qn(n+1)/2

(−q; q)n
= 1 + q

∞∑
n=0

(−1)n(q; q)nqn. (1)

The coefficient of qn is equal to the difference of the number of
partitions of n into distinct parts with even rank, and the number
of partitions of n into distinct parts with odd rank.



Mock Theta Functions

Ramanujan to Hardy 12 January 1920

I discovered very interesting functions recently which I call “Mock”
ϑ-functions. Unlike the “False” ϑ-functions (studied partially by
Prof. Rogers in his interesting paper) they enter into mathematics
as beautifully as the ordinary ϑ-functions.

Sander Zwegers, Ken Ono, Kathrin Bringmann
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Integrals

Integrals

Complete Elliptic Integral of the First Kind

K (k) :=

∫ π/2

0

dϕ√
1− k2 sin2 ϕ

k , 0 < k < 1, is the modulus.

Incomplete Elliptic Integral of the First Kind∫ x

0

dϕ√
1− k2 sin2 ϕ

, 0 < x ≤ π/2



Integrals of Dedekind Eta-Functions

Integrals of Dedekind Eta-functions

f (−q) = (q; q)∞ = e−2πiz/24η(z), q = e2πiz , Im z > 0

Let

v := v(q) := q
f 3(−q)f 3(−q15)

f 3(−q3)f 3(−q5)
.

∫ q

0
f (−t)f (−t3)f (−t5)f (−t15)dt

=
1

5

∫ 2 tan−1(1/
√
5)

2 tan−1

(
1√
5

√
1−11v−v2

1+v−v2

) dϕ√
1− 9

25 sin2 ϕ
.
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Integrals

Integral Transforms

Special Integrals

Fw (t) :=

∫ ∞
0

sin(πtx)

tanh(πx)
e−πwx

2
dx .

Fw (t) = − i√
w

e−πt
2/(4w)F1/w (it/w).
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Further Topics

Dirichlet Series and Euler Products

Infinite Series Identities
Approximations

Numerical Calculations
Diophantine Equations

Elementary Mathematics
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First Letter to Hardy

Ramanujan to Hardy 16 January 1913

If

u =
x

1 +
x5

1 +
x10

1 +
x15

1 +
x20

1 + · · ·
and

v =
5
√

x

1 +
x

1 +
x2

1 +
x3

1 + · · · ,

then

v5 = u · 1− 2u + 4u2 − 3u3 + u4

1 + 3u + 4u2 + 2u3 + u4
.



First Letter to Hardy

1

1 +
e−2π

1 +
e−4π

1 +
e−6π

1 + · · ·

=

√5 +
√

5

2
−
√

5 + 1

2

 5
√

e2π.

1

1 −
e−π

1 −
e−2π

1 −
e−3π

1 + · · ·

=

√5−
√

5

2
−
√

5− 1

2

 5
√

eπ.
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First Letter to Hardy

1

1 +
e−π

√
n

1 +
e−2π

√
n

1 +
e−3π

√
n

1 + · · ·

can be exactly found if n be any positive rational quantity.



Second Letter to Hardy

Ramanujan to Hardy 27 February 1913

(1) If

F (x) =
1

1 +
x

1 +
x2

1 +
x3

1 +
x4

1 +
x5

1 + · · · ,

then {√
5 + 1

2
+ e−2α/5F (e−2α)

}

×

{√
5 + 1

2
+ e−2β/5F (e−2β)

}
=

5 +
√

5

2

with the condition αβ = π2.



Second Letter to Hardy

N.B. It is always possible to find exactly the value of

1

1 +
e−π

√
n

1 +
e−2π

√
n

1 +
e−3π

√
n

1 + · · ·

and similar continued fraction if n be any rational quantity. e.g.

1

1 +
e−2π

√
5

1 +
e−4π

√
5

1 +
e−6π

√
5

1 +
e−8π

√
5

1 + · · ·

= e2π/
√
5


√

5

1 +
5

√
53/4

(√
5−1
2

)5/2
− 1

−
√

5 + 1

2

 .



Second Letter to Hardy

The above theorem is a particular case of a theorem on the
continued fraction

1

1 +
ax

1 +
ax2

1 +
ax3

1 +
ax4

1 +
ax5

1 + · · · ,

which is a particular case of the continued fraction

1

1 +
ax

1 + bx +
ax2

1 + bx2 +
ax3

1 + bx3 + · · · ,

which is a particular case of a general theorem on continued
fractions.
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Hardy writes Ramanujan

Hardy to Ramanujan, 26 March 1913

(the day on which Paul Erdös was born)

What I should like above all is a definite proof of some of your
results concerning continued fractions of the type

x

1 +
x2

1 +
x3

1 + · · · ;

and I am quite sure that the wisest thing you can do, in your own
interests, is to let me have one as soon as possible.
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Hardy writes Ramanujan again

Hardy to Ramanujan, 24 December 1913

If you will send me your proof written out carefully (so that it is
easy to follow), I will (assuming that I agree with it–of which I
have very little doubt) try to get it published for you in England.
Write it in the form of a paper ‘On the continued fraction

x

1 +
x2

1 +
x3

1 + · · · , ’

giving a full proof of the principal and most remarkable theorem,
viz. that the fraction can be expressed in finite terms when
x = e−π

√
n, when n is rational.



Rogers–Ramanujan Continued Fraction

R(q) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · · , |q| < 1

R(1) =

√
5− 1

2
, −R(−1) =

√
5 + 1

2



Rogers–Ramanujan Continued Fraction

R(q) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · · , |q| < 1

R(1) =

√
5− 1

2
, −R(−1) =
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5 + 1

2



Rogers–Ramanujan Continued Fraction

f (−q) = (q; q)∞

1

R(q)
− 1− R(q) =

f (−q1/5)

q1/5f (−q5)

and

1

R5(q)
− 11− R5(q) =

f 6(−q)

qf 6(−q5)
.
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Some values for R(q)

S(q) := −R(−q)

p. 210

S(e−π
√

7/5) =

(
−5
√

5− 7 +

√
35(5 + 2

√
5)

)1/5

p. 210 Let a = 2
√

15 and b = 3
√

5− 1. If

2c =
a + b

a− b
5
√

5− 11,

then
S5(e−π

√
9/5) =

√
c2 + 1− c.
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Class Invariants and Singular Moduli

χ(q) := (−q; q2)∞

If n is any positive rational number and q = exp(−π
√

n),

Gn := 2−1/4q−1/24χ(q).

α = k2, αn := α(e−π
√
n)

is the singular modulus.

Gn = {4αn(1− αn)}−1/24.



Examples of Class Invariants
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√
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√

3√
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√
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2

)1/4
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√

23√
2

)1/12(
3
√
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√
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2

)1/8
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√6 + 3
√

3

4
+

√
2 + 3

√
3

4

1/2



Examples of Class Invariants
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√
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√
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√
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√
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4
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√
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√
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√
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8
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√561 + 99
√

33

8
+

√
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√
33

8

1/2



Identities in Two Variables

Entry (p. 207, Lost Notebook)

If

P =
f (−λ10q7,−λ15q8) + λqf (−λ5q2,−λ20q13)

q1/5f (−λ10q5,−λ15q10)
,

Q =
λf (−λ5q4,−λ20q11)− λ3qf (−q,−λ25q14)

q−1/5f (−λ10q5,−λ15q10)
,

then



Identities in Two Variables

P − Q = 1 +
f (−q1/5,−λq2/5)

q1/5f (−λ10q5,−λ15q10)
,

PQ = 1− f (−λ,−λ4q3)f (−λ2q,−λ3q2)

f 2(−λ10q5,−λ15q10)
,

P5 − Q5 = 1 + 5PQ + 5P2Q2

+
f (−q,−λ5q2)f 5(−λ2q,−λ3q2)

q f 6(−λ10q5,−λ15q10)
.



Identities in Two Variables

Let λ = 1.

P =
f (−q7,−q8) + qf (−q2,−q13)

q1/5f (−q5)
=

1

R(q)
,

Q =
f (−q4,−q11)− qf (−q,−q14)

q−1/5f (−q5)
= R(q).

1

R(q)
− 1− R(q) =

f (−q1/5)

q1/5f (−q5)
,

PQ = 1,

1

R5(q)
− 11− R5(q) =

f 6(−q)

qf 6(−q5)
.
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Power Series Coefficients

C (q) :=
1

q−1/5R(q)
.

C (q) =
∞∑
n=0

vnqn, |q| < 1.

∞∑
n=0

v5nqn =
1

(q)∞

( ∞∑
n=−∞

(−1)nq(75n2+n)/2

+q4
∞∑

n=−∞
(−1)nq(75n2+49n)/2

)
.



Power Series Coefficients

Corollary

We have v2 = v4 = v9 = 0. The remaining coefficients vn satisfy
the inequalities

v5n > 0,

v5n+1 > 0,

v5n+2 < 0,

v5n+3 < 0,

v5n+4 < 0.



A page from Ramanujan’s Lost Notebook



The Enigmatic Continued Fraction

p. 45

Theorem. Let ζ(s) denote the Riemann zeta function, and let
L(s, χ) denote the Dirichlet L-function associated with
χ(n) =

(
n
3

)
, where

(
n
3

)
denotes the Legendre symbol. For each

integer n ≥ 2, let

aν =
4Γ(ν)ζ(ν)L(ν + 1, χ)

(2π/
√

3)2ν+1
.

Then, as x → 0+,

(3x)1/3

1 −
1

1 + ex −
1

1 + e2x −
1

1 + e3x − · · ·
=

Γ(13)

Γ(23)
eG(x),
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The Enigmatic Continued Fraction

where, as x → 0+,

G (x) ∼
∞∑
n=1

a2nx2n.

a2 =
1

108
, a4 =

1

4320
, and a6 =

1

38880
.

Furthermore, as x → 0+,

the minimum value of aνxν

∼ 3

π

√
2x

π
e−4π

2/(3x).

As x → 0+, if

R(e−x) =

√
5− 1

2
eG(x),

then, for any large positive number N,

G (x) = O(xN).
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The Enigmatic Continued Fraction

p. 45 If ω = e2πi/3, then for |q| < 1,

lim
n→∞

(
1

1 −
1

1 + q −
1

1 + q2 − · · · −
1

1 + qn + a

)
= −ω2

(
Ω− ωn+1

Ω− ωn−1

)
· (q2; q3)∞

(q; q3)∞
,

where

Ω :=
1− aω2

1− aω

(ω2q; q)∞
(ωq; q)∞

.

Andrews, Berndt, Sohn, Yee, Zaharescu, Advances in Math. 192
(2005).
Bowman, McLaughlin, Advances in Math. 210 (2007).
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Freeman Dyson

Freeman Dyson
University of Illinois, Urbana

June 1, 1987

I gave thanks to Ramanujan for two things, for
discovering congruence properties of partitions and for
not discovering the criterion for dividing them into equal
classes. That was the wonderful thing about Ramanujan.
He discovered so much, and yet he left so much more in
his garden for other people to discover. In the 44 years
since that happy day, I have intermittently been coming
back to Ramanujan’s garden. Every time when I come
back, I find fresh flowers blooming.


