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Introduction

Theory of Diophantine equations is a branch of Number Theory
which deals with the solutions of polynomial equations in either
integers or rational numbers.

� 3x + 7 = y

� x2 + 18x + 81 = y 2

� x2 + y 2 = z2, where x , y and z are positive integers.

� The famous Pythagorean triples (3, 4, 5), (5, 12, 13) etc.
� x = k(n2 −m2), y = 2knm, z = k(n2 + m2) generates all

Pythagorean triples
� n = 2,m = 1, k = 1 gives x = 3, y = 4, z = 5
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Characteristics of Diophantine Equations

Easy to state

Extremely difficult to guess if it is trivial to solve or needs deep
mathematics

No general method to solve
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Example : Fermat’s Last Theorem

Theorem

If n ≥ 3 is an integer then the equation

xn + yn = zn

does not have any solutions x , y , z in nonzero positive Integers.

In other words, the only solutions in rational numbers of the equation
xn + yn = 1 have either x = 0 or y = 0.

Unsolved for more than 350 years

Proved by Andrew Wiles in 1994 using Algebraic Geometry,
Modular forms, Algebraic Number Theory
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Example : Elliptic Curves

Curves given by cubic equations of the form

y 2 = f (x) = x3 + ax2 + bx + c

such that the roots of f (x) are different.

Think of an Elliptic Curve as a set of solutions (x , y) to its
equation together with an extra point O (point at infinity)
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Problem Statement

Diophantine equations of the form f (x) = g(y) where f (x) and g(y)
are polynomials with integer or rational coefficients.

Does the equation f (x) = g(y) has infinitely many rational solutions
with a bounded denominator?

The equation f (x) = g(y) has infinitely many rational solutions with
a bounded denominator if there exists a positive integer ∆ such that
f (x) = g(y) has infinitely many rational solutions x , y satisfying
∆x ,∆y ∈ Z .
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Motivation

Erdos and Selfridge(1975) : Finite product of consecutive
integers can never be a perfect power. In other words, the
Diophantine equation

x(x + 1)(x + 2) · · · (x + m − 1) = yn

does not have any nontrivial solution in integers when m, n > 1.
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Generalization and Finiteness

This leads to the general problem

x(x + 1)(x + 2) · · · (x + m − 1) + r = yn

where r is any rational number.

Surprisingly, except for the two values of r ∈ {1, 1/4}, we get that
this equation has only finitely many solutions.
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x(x + 1)(x + 2) · · · (x + m − 1) + r = y n

Theorem (With B. Sury and Y. Bilu (Acta Arithmetica))

Let r be a nonzero rational number which is not a perfect power in Q.
Then the equation x(x + 1)(x + 2) · · · (x + m − 1) + r = yn has at most
finitely many solutions (x , y , m, n) satisfying (x , m, n) ∈ Z and y ∈ Q,
m, n ≥ 2. Moreover, all the solutions can be calculated effectively.
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Outline of proof

x(x + 1)(x + 2) · · · (x + m − 1) + r = yn

− Used Schinzel - Tijdeman theorem to get bounds on x , y and n.

− Bound on m using elementary methods.
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Schinzel - Tijdeman Theorem

In f (x) = g(y) when g(y) = yn, one can use Schinzel - Tijdeman
Theorem and get the result.

Schinzel - Tijdeman’s Theorem.

f (x) ∈ Q[x ] has at least three simple roots and n > 1 or f (x) has at
least two simple roots and n > 2. Then f (x) = yn has only finitely
many solutions in x ∈ Z , y ∈ Q.

Also there exists an effective constant N(f ) such that for any solution
of f (x) = yn in x , n ∈ Z , y ∈ Q satisfies n ≤ N(f ). (Note that here
n is variable)
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Bilu - Tichy

In Diophantine equation x(x + 1)(x + 2) · · · (x + m− 1) + r = yn, we
applied Schinzel - Tijdeman theorem to get finiteness of x , y and n.

However, one can not apply Schinzel - Tijdeman if g(y) is not of the
form yn.

In 2000, Bilu and Tichy gave a remarkable theorem in which they
obtained explicit finiteness criterion for the equation f (x) = g(y).

− five families of pairs of polynomials (f , g) such that f (x) = g(y)
has infinitely many solutions.

− each pair (f , g) for which f (x) = g(y) has infinitely many
solutions with bounded denominator can be determined from the
above pairs (standard pairs).
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Bilu - Tichy Theorem.

Bilu - Tichy Theorem.

For non-constant polynomials f (x) and g(x) ∈ Q[x ], the following
are equivalent:

The equation f (x) = g(y) has infinitely many rational solutions
with a bounded denominator.

We have f = φ(f1(λ)) and g = φ(g1(µ)) where
λ(x), µ(x) ∈ Q[X ] are linear polynomials, φ(x) ∈ Q[X ], and
(f1(x), g1(x)) is a standard pair over Q such that the equation
f1(x) = g1(y) has infinitely many rational solutions with a
bounded denominator.
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x(x + 1)(x + 2) · · · (x + m − 1) = g(y)

x(x + 1)(x + 2) · · · (x + m − 1) = g(y) ,

− Bilu - Tichy to get finiteness of x and y .

− Proved that m is bounded.
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x(x + 1)(x + 2) · · · (x + m − 1) = g(y)

Theorem (With B. Sury (Indigationes Mathematicae))

Fix m ≥ 3 such that m 6= 4 and let g(y) be an irreducible polynomial
in Q[y ]. Then there are only finitely many rational solutions (x , y)
with bounded denominator of the equation
x(x + 1)(x + 2) · · · (x + m − 1) = g(y).

When m = 4 and g(y) be an irreducible polynomial in Q[y ] then
equation x(x + 1)(x + 2) · · · (x + m − 1) = g(y) has infinitely many
solutions only when g(y) = 9

16 + bδ(y)2 where b ∈ Q∗ and
δ(y) ∈ Q[y ] is a linear polynomial. Besides this, the above equation
has only finitely many solutions.
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x(x + 1)(x + 2) · · · (x + m − 1) = g(y)

More interesting part: we were able to bound m, the degree of f
whenever g(y) is an irreducible polynomial.

Theorem

Assume that g(y) is an irreducible polynomial in Q[y ] and ∆ be a positive
integer. Then there exists a constant C = C (∆, g) such that for any
m ≥ C, the equation x(x + 1)(x + 2) · · · (x + m − 1) = g(y) does not
have any rational solution with bounded denominator ∆. Moreover, C can
be calculated effectively.
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Idea of the Proof

Idea : if you take product of any d consecutive integers then that
product is definitely divisible by d .

8.9.10.11 is divisible by 4

35.36.37.38.39.40.41 is divisible by 7
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Idea of the Proof

for any prime P , when m ≥ P ,
x(x + 1)(x + 2) · · · (x + m − 1) is divisible by P .

In other words, polynomial x(x + 1)(x + 2) · · · (x + m − 1) has
root modulo P for every P .

Since g(y) is an irreducible polynomial, there are infinitely many
primes P such that g(y) does not have root modulo P .

Choose smallest and suitable prime P such that g(y) does not
have root modulo P . Then one can prove that for m ≥ P ,
f (x) = g(y) does not have root modulo P .

C = P will be the bound for m.
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Diophantine Equation Reduced to Elliptic Curve

r + s + t = rst = 1 where r , s, t are algebraic integers in the
ring of the integers of quadratic field.

Theorem (With K. Chakraborty(Acta Arithmetica))

If K = Q(
√
d) is a quadratic field with d a square free integer, then

except for d = −1 and 2, the equation r + s + t = rst = 1 has no solution
in the ring of integers of K.
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Diophantine Equation Reduced to Elliptic Curve

r + s + t = rst = 1

− Used theory of elliptic curves to get the result.

− From the Diophantine equation, by doing the change of variable,
one gets the elliptic curve y 2 = x3 + 621x + 9774. The result is
proved by looking at the rational points on the elliptic curve.
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Current Research in Diophantine Equations

T. N. Venkatramana (TIFR) in his paper( Proc.Int.Con.-Number
Theory, No 1, 2004, pp. 155-161) has proved the following:

Let a and b be coprime positive integers and for an integer n 6= 0, let
φ(n) be the number of positive integers not exceeding |n| and
coprime to n. Consider the infinite sequence
φ(ax + b); x = .....− 2,−1, 0, 1, 2, 3..... and let g(a, b) denote the
gcd of the numbers occurring in the above sequence. Then g(a, b) is
bounded by 4 for all a and b.

We are trying to prove it for quadratic polynomials.
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Current Research in Diophantine Equations

We have f (x) = ax2 + bX + c where a, b, c ≥ 0,

− look at f (0), f (1), f (2), f (3), ....f (−1), f (−2), .....

− calculate φf (0), φf (1), φf (2), ...φf (−1), φf (−2), .....

− find the gcd of numbers occurring in the above sequence.
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Current Research in Diophantine Equations

for any prime m ≥ 5, there exist a residue r mod m such that
f (r) 6= 0 or 1 mod m.

− get s = mx + r such that

f (s) = f (mx + r) = p for some prime p

− Is it true that for some n ∈ Z ,

a(mn + r)2 + b(mn + r) + c = p for some prime p.

Manisha Kulkarni (IIIT, Bangalore) Diophantine Equations June 25, 2012 26 / 1



Current Research in Diophantine Equations

Observations:

b- even, monic polynomial f (x) = x2 + bx + c , takes values
n + 1, n + 4, n + 9, n + 16, ..., n + d2, for fixed n.

for some d ∈ Z , n + d2 ?
= p

b - odd, monic polynomial f (x) = x2 + bx + c , takes values
n + 2, n + 6, n + 12, ..., n + d + d2, for fixed n.

for some d ∈ Z , n + d + d2 ?
= p
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