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ABSTRACT
Using formal specifications to generate test cases presents
great potential for automation in testing and enhancing the
quality of test cases. However, an important challenge in
this direction is that specifications are at a more abstract
level than the implementation, with many important imple-
mentation level details missing. But to generate executable
test cases, these implementation details must be included at
some stage. Though, there has been a lot of work in test gen-
eration from specification, all existing methods suffer from
this problem: either the test cases are not executable, or the
process involves a non-trivial manual step of translating the
abstract test cases to concrete test cases.

In this work, we present an approach of specification based
test generation for web applications, called ACT, that over-
comes the above challenge: test generation is completely au-
tomated and the test cases are fully executable on a test exe-
cution framework (e.g. Selenium RC). Further, our method-
ology allows generation of multiple sets of concrete test cases
from the the same formal specification. This makes it pos-
sible to use the same abstract specification to generate test
cases for a number of versions of the system. Using ACT,
we generated concrete Selenium RC Junit test cases for two
web applications, Hospital Management System (LOC 133)
and Student Information System. The concrete test cases
obtained were executed on the implementations of these sys-
tems.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing tools, symbolic
execution; H.3.5 [Online Information Services]: Web-
based services

General Terms
Algorithms, measurement, experimentation

Keywords

Test generation, embedded systems, symbolic execution

1. INTRODUCTION
Due to the pervasive use of web applications, building in
rigour in designing and testing web applications [1] (web
apps) has assumed greater importance in recent years. For-
mal specification languages are used to elicit customer re-
quirements by helping remove ambiguity, inconsistency and
incompleteness in the software requirements and design pro-
cess. Formal methods have been widely used for verification
and test generation for life-critical software systems, e.g. au-
tomotive and aerospace. However, their adoption in web
apps has been limited, primarily due to cost consideration.

Focusing on the problem of specification based test gener-
ation for web apps, in our observation, there are two main
aspects of this problem: cross-interaction data dependency
(or just data dependency) and mapping. To understand the
data dependency problem, note that a test case for a web
app is usually a sequence of atomic interactions (consist-
ing of inputs to and outputs from the system under test).
In most realistic cases, values involved in one interaction
are related to other interactions. For example, for a suc-
cessful login, it is necessary to enter a user name which is
already registered (through an earlier interaction). Simi-
larly, the password used must correspond to the user name
enterred. Such inter-relations between data values from var-
ious atomic interaction are a tricky aspect of specification
based test generation. Any test generation method using an
isolated fragment of the formal specification at a time will
fail to capture these cross-interaction data dependencies.

The second problem is called the mapping problem. (For-
mal) Specification derives its value in its succinctness and
abstractness. Unnecessary implementation details are left
out, making it more understandable to human readers and
amenable to automated analysis. However, due to the same
reason, test cases generated from specification also are ab-
stract. Some of the details necessary to execute these test
cases are missing, as they are not there in the source itself
(the specification). Therefore, to execute such test cases,
they must be concretised, i.e. all the necessary implementa-
tion details must be re-introduced. Little automation has
been achieved in this direction in the literature. There-
fore, this translation of abstract test cases to concrete (ex-
ecutable) test cases is done largely manually. This signifi-
cantly diminishes the benefits derived from automated test
generation from specification.



In this paper, we present ACT (i.e. Abstract to Concrete
Test), a specification based test generation method that au-
tomatically generates concrete test cases from abstract for-
mal specification (a variant of Statecharts to model the nav-
igation behaviour of web applications). ACT solves the data
dependency problem using symbolic execution, a technique
that has been successfully used for test case generation in a
wide variety of settings. To solve the mapping problem, we
use a novel mapping approach that automatically translates
abstract test cases into concrete ones. By solving these two
major hurdles, ACT completely automates the process of
test generation from formal specification of web apps.

In our experiments, test cases for two web app were derived
from the Statechart model. Abstract test cases derived from
the Statechart model were converted to Selenium RC JUnit
concrete test cases which were then successfully executed on
the system implementation.

The remainder of the paper is organized as follows. Sec-
tion 2 gives the background and motivation, Section 3 gives
a brief review of related work while Section 4 explains the
proposed methodology. Section 5 illustrates the generation
of test path from Statechart model. Section 6 illustrates
how abstract test cases are generated using Symbolic exe-
cution and SMT solver. Section 7 illustrates the translation
of abstract test cases to concrete test cases. Section 8 gives
the results and Section 9 concludes the paper and gives the
scope for future work.

2. MOTIVATION
Several studies [14, 5, 6] have used automation to gener-
ate concrete test cases from abstract test cases for testing
web applications. The work in [6] uses Abstract State Ma-
chines (ASMs) to model web applications, and abstract test
sequences are generated from the ASM model. In their ap-
proach, the abstract test case to concrete test case translator
scans the abstract test sequence in order to extract the val-
ues of the event variable and concrete Sahi [7] scripts are
generated according to these values. A template is used to
describe the rules which guides the translation process. For
example, the Sahi transformation rule for a click event is

SUBMIT(name) ::=<< click( submit(“name”));>>.

Figure 1 shows a part of an abstract test sequence generated
from ASM model, and Figure 2 shows the corresponding
Sahi scripts generated using the abstract to concrete test
case translator approach in [6].

[ currentState=EMPTY
currentPage=INDEX
event=TEXT USERNAME ]

[ currentState=USERNAME
event=TEXT PASSWORD ]

[ currentState=USERPASSW
event=SUBMIT SUBMIT ]

[ currentState=EMPTY
currentPage=MAIN ]

Figure 1: An Abstract Test Sequence Example

However, the approach in [6] does not generate concrete test
cases from abstract test cases when there is a data flow be-
tween different interactions of the web application with the

navigateTo(“index.php”);
setValue( textbox(“username”),“admin”);
setValue( textbox(“password”),“admin”);
click( submit(“submit”));
assertEqual(“main.php”,top.location.href);

Figure 2: The corespnding Concrete Sahi Script of
Figure 1

!

Welcome!

Patient_Reg!
!

Patient_Login!

Error_Page!
!

Patient_Dashboard!
!
!

link1.!clicked! link2.!clicked!

register.!clicked!
[!username1!!=!blank!^!password1!

!=!blank!]!/!
registered_Usernames:=!
registered_Usernames!∪!
username1!^!
registered_Passwords:=!
registered_Passwords!∪!
password1!register.!clicked!

[!username1!=!blank!v!!
password1=blank!]!
!

login!.!clicked!!
[!username2∈!
registered_Usernames!
^!password2!∈!
registered_Passwords!]!
!
!

login.!clicked!
[!username2!∉!

registered_Usernames!
^!password2!∉!

registered_Passwords!]!

!!!!!!!!!!!logout.!clicked!!
!

Back_to_homepage.!clicked!
!

Figure 3: An example of data flow in Hospital Man-
agement System

web server. In a web application, the value which is entered
by the user in one interaction of the web application with the
web server is often used back in another interaction of the
web application with the web server. For example, Figure 3
shows an example of data flow across different interactions
of an online Hospital Management system. As shown in Fig-
ure 3, a user registers in the Patient Reg page by entering
values in the username and password input fields. A neces-
sary requirement for the user to login into the Patient Login
page is that the user must be registered beforehand. There
is a data flow between the Patient Reg and Patient Login
webpage. A definition is a location where a value for a
variable is stored in memory (assignment, user input, etc.).
A use is a location where a variable’s value is accessed. Here,
the variables registered Usernames and registered Passwords
are defined in the transition from state Patient Reg to Pa-
tient Login and are used in the transition from state Pa-
tient Login state to Patient Dashboard state. So, our ACT
(Abstract to Concrete Tests) tool needs to store the con-
crete test input values which it generates for the username
and password fields in the Patient Reg webpage, and then
use these values when generating concrete test inputs later
in the Patient Login page. For this purpose, the automa-
tion step of conversion of abstract test case to concrete test
case in our approach stores and shares data across different
interactions of the web application with the web server and
generates Selenium RC JUnit concrete test cases utilizing
this data. For instance, if the concrete test input values



generated for the username and password fields of the Pa-
tient Registration page (Patient Reg in Figure 3) are “Joe”
and “abc”, then “Joe” and “abc” would be entered as test in-
puts in the Patient Login page (Patient Login in Figure 3)
in the case of Hospital Management System.

3. RELATED WORK
A number of formal, informal and semi-formal models like
automata [8], Statechart [9], UML and OCL [11, 20], UML
based web engineering, alloy, directed graph and control flow
graphs, SDL, term rewriting systems, XML [23] have been
proposed in various studies [12] for modeling web applica-
tions. The authors in [11, 20] have proposed UML class
diagram and the authors in [9] have proposed statechart for
modeling web navigation. A methodology for generation of
concrete executable tests from abstract test cases using a
test automation language, the Structured Test Automation
Language (STAL) was proposed in [14]. The authors in [14]
have proposed a mapping between identifiable elements in
the model to JUnit executable Java code. The author in
[5] have presented an approach using domain specific lan-
guage to model the navigation aspect of the web application
and have used a UI mapping XML file to generate concrete
test cases for Selenium and Canoo web test tools. How-
ever none of these approaches generate concrete test cases
from abstract test cases by sharing and utilizing data across
different interactions with the web application. In our ap-
proach, after the abstract test cases are derived from the
Statechart model, we could generate concrete Selenium RC
JUnit test cases by sharing data across different interactions
with the web application. [15] used finite state machines for
web application testing. In [16], an approach that utilizes
recorded user interaction data to construct a state machine
model especially for testing AJAX functionality is presented.
Input data is provided from the collected requests and test
oracles have to be created manually. The generated test
sequences are translated into the test case format of the Se-
lenium test automation tool. The authors in [21] have used
model checking to generate test cases for control flow and
data flow coverage criteria.

4. PROPOSED METHODOLOGY
4.1 Formal Web Navigation Model: Statechart

We have used Statecharts [10] for modelling the navigation
behaviour of web applications.

Figure 4.1 shows the Statechart specification of our case
study, an online Hospital Management System (HMS). The
set of states in UML state diagrams represents both the
basic states and the composite states which contain other
states as sub-states. In the Statechart specification shown
in Figure 4.1, inactive state denotes that the web applica-
tion has not yet started operating. The composite state
active is composed of five sub-states and denotes that the
web application is in an operating state. The transition
initialize takes the web application from inactive to active
state and the variables registered Users and logged Users
are initially set to null sets. The transition shutdown from
active to inactive state denotes that the web application
has stopped operating. Inside active state, each web page

was modeled as a separate state. When the user navi-
gates from one webpage to another, there is a transition
between the corresponding states which is labeled by the
tuple <event>[<guard>]/<action>, where only the <event>
is mandatory. Here we have used mathematical notations of
sets and first order predicate logic constructs in guards and
actions of the transitions in Statechart model. Patient Reg
denotes the Patient Registration page of the Hospital Man-
agement System. username1 and password1 denotes the
username andpassword that the user enters in the Patient
Registration Page. Patient Login denotes the Patient Login
page, and username2 and password2 denotes the username
and password which the user enters in the Patient Login
page of the Hospital Management System.

In the given Statechart model of HMS, the variable regis-
tered Users is shared between different interactions of the
web application with the web server and across different
users using the web application. When the web application
has started operating, registered Users is initialized to the
null set. On a successful registration, its value is updated
and while logging back, its value is accessed to check if the
patient is already registered or not.

4.2 System Architecture

Figure 6: Proposed Test Generation Method from
Statechart web navigation model

Figure 6 gives an overview of the approach that our ACT
(Abstract to Concrete Tests) tool uses for generating con-
crete Selenium RC JUnit test cases from the formal State-
chart web navigation model. The navigation behavior of our
case study web application is modeled using the formal spec-
ification language ‘Statechart’. The front end which gener-
ates test paths from the Statechart model can be a test path
generating algorithm like model checking or graph coverage
algorithm. Abstract test cases are generated from the test
paths with the help of the Statechart specification. Then
the abstract test cases generated are converted to Selenium
RC JUnit concrete test cases using the Mappings XML file.
We explain each of these steps in detail in sections V, VI
and VII respectively.

5. TEST PATH GENERATION
There are several approaches proposed to generate test cases
from Statechart model [18, 19]. We use model checking [3]
as a front end to generate test paths from the Statechart
model. Model checking is a formal verification technique
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Figure 4: Model of Web Navigation of Hospital Management System using UML Statechart model.

which is used for determing whether a system model sat-
isfies certain properties. But model checking can also be
used to generate test cases and is one of the ways of doing
model based testing. The straightforward way to represent
a statechart as a transition system is to flatten its hierarchy
[26]. Figure 5 shows the flattened statechart specification
of Figure 4.1. In our approach, the hierarchical Statechart
navigation model was first flattened and then transformed
into an SMV program. The trap properties for navigation
are written in CTL formulas and then the Symbolic Model
Verifier (NuSMV) tool [22] is executed which generates the
counter examples.

Test paths are generated by formulating a temporal logic
specification as a trap property to be verified. Trap prop-
erty is the negation of the original temporal logic specifi-
cation. A counter example is generated if the model does
not satisfy the temporal logic formula. A counter exam-
ple is an execution trace that will take the model from its
initial state to a state where the violation occurs. In this
way, we get all the test paths from the generated counter

examples. In the Statechart model of Figure 5, the state
active-Patient Dashboard should be reachable from the ini-
tial state in the Statechart. So, the CTL Specification prop-
erty for specifying that active-Patient Dashboard is reach-
able from the initial state is written as EF(state=active-
Patient Dashboard) which was negated to generate trap prop-
erty as specified below.

CTL Trap Specification Property: !EF(state=active-Patient Dashboard)

This trap property will generate a counter example which
is our test path. Figure 7 shows the execution trace for
the counter example generated from NuSMV for the above
CTL specification. The CTL trap properties for generating
test paths are written for various requirements of the web
application, like the top page of a web application should
be reachable from all the pages of the web application. In
addition, we also wrote CTL trap properties for node cover-
age criterion. Table I shows some of the various CTL trap
properties which we used to generate the test paths.



!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! !

inactive!

active!)!Welcome!

active!)!
Patient_Reg!

active!–!
Patient_Login!

active!)!Error_Page! active!–!Patient_Dashboard!

do!/!display!!
error!message!

do!/!display!hospital!
services!

initialize/!
registered_Usernames:=null
^registered_Passwords=null!
^!logged_Usernames=null!
^logged_Passwords=null!

link1.!clicked!∧!
¬!shutdown!!

register.!clicked!∧!¬shutdown!
[!username1!!=!blank!∧!password1!!=!
blank!∧(username1∉!
registered_Usernames!)^(password1!
∉!registered_Passwords)]!/!
registered_Usernames:=!
registered_Usernames!∪!!
username1!^! ! ! ! ! ! !
registered_Passwords:=!
registered_Passwords!∪!!!
password1!

!

link2.!clicked!∧!
¬!shutdown!

register.!clicked!∧!
¬shutdown!!
[!username1∈!
registered_Usernames!
^password1!∈!!!
registered_Passwords!]!

login.!clicked!∧!
!¬!shutdown!
[!username2∉!
registered_Usernames!
^password2!∉!!
registered_Passwords!]!

login.!clicked!∧!¬!shutdown!
[!username2∈!!
registered_Usernames!
^password2!∈!
!registered_Passwords!]!/!
logged_Usernames!:=!!
logged_Usernames!
!∪!username2!^!
logged_Passwords!:=!
logged_Passwords!!
∪!password2!

Back_to_homepage.!!
clicked!!∧¬!shutdown!

!

shutdown!

logout.!clicked!∧!
¬!shutdown!/!
logged_Usernames!
:=logged_username!
–!username2!^!
logged_Passwords:=!
logged_Passwords!
)password2!

shutdown!

shutdown!

shutdown!

shutdown!

Figure 5: Flattened statechart specification of Hospital Management System given in Figure 4.1.

6. ABSTRACT TEST CASE GENERATION
The front-end of ACT (Abstract to Concrete Tests) tool
generates sytactic paths through the statechart. To generate
concrete test cases from these paths, input values have to be
computed which will lead the execution through the desired
path. For example, consider the Statechart in Figure 9 which
is a simplified version of the Statechart shown in Figure 5.
Suppose that the front-end generates a path: t1t4t5. To
traverse t2, the predicate in its guard, u.text /∈ RU , should
be satisfied. Since, RU = φ from the action of t1, the above
predicate is vacuously true. Thereafter, to traverse t5, the
predicate in its guard, u.text ∈ RU should be satisfied. Since
RU has only one value (the value assigned to u.text on t1),
on t5, u.text must be assigned the same value to satisfy the
above guard.

The above problem of generating input values to guide the
execution along a particular path is well-known in test case
generation. One of the most successful methods of solving
this problem uses symbolic execution [13, 24]. The algorithm
used by ACT to generate the abstract test cases using sym-
bolic execution is shown in the block diagram in Figure 8.
ACT carries out symbolic execution of the statechart specifi-
cation along the given path. The path predicate correspond-
ing to this is computed. This, in turn, is given to an SMT
solver to generate concrete input values. These values are

used to generate the abstract test cases.

We now explain the process of abstract test case generation
using symbolic execution in further detail.

6.1 Computation of Concrete Values
The control flow path corresponding to the path t1t4t5 is
shown in figure 10(a). The rectangular blocks are basic
blocks and the ellipses are decision blocks. The surround-
ing grey boxes represent the corresponding elements in the
statechart. On executing this path symbolically, we get the
symbolic execution trace shown in figure 10(b). The block
by block mapping from the control flow path to the sym-
bolic execution trace is shown using dashed arrows. The
path predicate for a control flow path is derived by tak-
ing the conjunction of the predicates in symbolic execution
trace blocks corresponding to its decision blocks (shown in
ellipses). Therefore, for the path t1t4t5, the path predicate
is:

(X1 /∈ φ) ∧ (X2 ∈ {X1})
where X1 is the symbolic variable assigned to s1.u.text and
X2 is the symbolic variable assigned to s3.u.text. An SMT
solver [25] would determine if the path predicate is satisfi-
able, and if yes, then it will generate satisfying values for the
symbolic variables occuring in the formula. For example, a
value X1 = X2 = "a" would satisfy the above path predi-



–specification ! (EF state=active-Patient Dashboard) is false
–as demonstrated by the following execution sequence
Trace Description : CTL Counterexample
Trace Type : Counter example

-> State : 6.1 <-
state=inactive
link.clicked=none
initz=no
back to homepage.clicked=no
logout.clicked=no
username1 password1=not defined
username2 password2=not defined
register.clicked=no
login.clicked=no

-> State : 6.2 <-
initz=yes

-> State : 6.3 <-
state=active-Welcome

-> State : 6.4 <-
link.clicked=1

-> State : 6.5 <-
state=active-Patient Reg

-> State : 6.6 <-
username1=nonblank not belongs to registered Usernames
password1=nonblank not belongs to registered Passwords
register.clicked=yes

-> State : 6.7 <-
state=active-Patient Login

-> State : 6.8 <-
username2=belongs to registered Usernames
password2=belongs to registered Passwords
login.clicked=yes

-> State : 6.9 <-
state=active-Patient Dashboard

Figure 7: Counter Example generated
from NuSMV for the CTL specification

!EF(state=active-Patient Dashboard)

cate. Therefore, by entering the value "a" in both s1.u.text
and s3.u.text, we can lead the execution through the path
t1t4t5.

As another example, the syntactic path t1t2 would give a
path predicate as follows:

(X1 ∈ φ)

which is a contradiction (i.e. unsatisfiable predicate). Hence,
this path would be rejected by ACT as infeasible.

6.2 Plugging in Concrete Values
The final step of abstract test case generation is to plug in
the concrete input values computed in the symbolic execu-
tion stage at appropriate points of the control flow path.

Abstract Test
Case Generation

Path

Spec

Symbolic
Execution

Path
Predicate
Extraction

SMT
Solver

Form Test
Case

Abstract
Test
Case

Symbolic
Execution

Trace
Path

Predicate

Concrete
Values

Figure 8: Abstract test case generation using Sym-
bolic execution

s1: Registration
Page s2: E1

s3: Login
Page s4: Dashboards5: E2

t1: / /RU ← φ,LU ← φ

t2: b1.btnclick/
u.text ∈ RU/

t3: b1.btnclick/ /

t4: b1.btnclick/
u.text /∈ RU/
RU ← RU ∪ {u.text}

t5: b1.btnclick/
u.text ∈ RU/
LU ← LU ∪ {u.text}

t6: b1.btnclick/
u.text /∈ RU/

t7: b1.btnclick/
/

t8: l1.lnkclick/
/

Figure 9: Statechart Specification Registration and
Login

t1

s1

t4

s3

t5

RU ← φ
LU ← φ

s1.u.text← input()
s1.b1.btnclick()

s1.u.text /∈ RU

RU ← RU ∪ {s1.u.text}

s3.u.text← input()
s3.b1.btnclick()

s3.u.text ∈ RU

(a)

RU = φ
LU = φ

s1.u.text = X1

X1 /∈ φ

RU = {X1}

s3.u.text = X2

X2 ∈ {X1}

(b)

Figure 10: Symbolic Execution: (a) Control flow
path; (b) Symbolic Execution Trace



The actions in all the basic blocks which cause definition
of the input variables of the control flow path are taken in
sequence to create the abstract test case. The input() com-
mands are replaced by concrete values computed from the
symbolic execution stage. This gives the complete abstract
test case. This step would generate an abstract test case for
the path t1t4t5 as follows:� �
s1 . u . text = ”a ”
s1 . b1 . btnclick ( )
s3 . u . text = ”a ”
s3 . b1 . btnclick ( )� �
Note that even though the above inputs are concrete, the
test case itself is still abstract. Firstly, the variables s1.u.text

etc. need to be mapped to the implementation entities, e.g.
text box named “user name” in the page “Registration Page”.
Secondly, many of the inputs that may be needed in the
various pages may not be there in the specification. This
problem is solved using a mapping technique explained in
the next section.

7. GENERATING CONCRETE TEST CASES
The abstract test cases generated from the Statechart model
are on the same level of abstraction as the model. The gen-
erated test cases are abstract because the Statechart model
they are generated from contained only partial information
of the implementation under test. These abstract test cases
cannot be directly executed on the implementation. An ex-
ecutable test suite needs to be derived from the abstract
test suite which can communicate directly with the system
under test. This is achieved by mapping the abstract test
cases to concrete executable test cases. Selenium RC [27]
is a browser automation testing tool that is used to write
automated web application UI tests. In our approach, we
have used a mapping between phrases used in the State-
chart specification model to Selenium Remote Control JU-
nit test code which helps to translate an abstract test to
concrete Selenium RC JUnit test. Figure 11 shows a part of
XML file which gives a mapping between the phrases used
in the Statechart model to Selenium RC JUnit java code
for the case study of Hospital Management System. For ex-
ample, the phrase for state active-Patient Reg used in the
Statechart model in Figure 5 is mapped to the Selenium
RC JUnit code selenium.open(”http://localhost:8089/Jkek/

PatientRegistrationPage”); as shown in the mappings XML
file in Figure 11. The mapping XML file contains the phrases
used in the Statechart model denoted by <phrase> tag, the
value of the phrase denoted by <value> tag, the webpage
in which the phrase occurs denoted by <webpage> tag, con-
straints on the values that the phrase can take denoted by
<range> tag and the corresponding Selenium RC JUnit test
code denoted by <code> tag. These mappings are created
manually.

At this stage, it is possible to add information for inputs that
were abstracted out from the Statechart model. From the
source code implementation of the case study of Hospital
Management System, we identified additional input fields
which were absent in the Statechart model. For example,
in the Patient Registration page (Patient Reg in the state
chart model), two additional inputs were Name and Age.
For these extra input variables, the corresponding lines in

� �
<mappings>
<mapping>
<phrase>state</phrase>
<value>active−Patient_Reg</value>
<webpage>Patient Registration</webpage>
<code>”selenium . open ( http : // localhost :8089/”+
”Jkek/PatientRegistrationPage )”; </ code>

</mapping>
<mapping>
<phrase>Name</phrase>
<value>n</value>
<webpage>Patient Registration</webpage>
<range>alphanumeric</range>
<code>selenium . type ( ”input { [} @name=’name ’ { ] } ” ,

n );</code>
</mapping>
<mapping>
<phrase>Age</phrase>
<value>ag</value>
<webpage>Patient Registration</webpage>
<range>ag>0,ag<=30</range>
<code>selenium . type ( ”input { [} @name=’age ’ { ] } ” ,

ag );</code> }
</mapping>
<mapping>
<phrase>state</phrase>
<value>active−Patient_Login</value>
<webpage>Patient Login</webpage>
<code>selenium . open ( ”http : // localhost :8089/”+

”Jkek/PatientLoginPage ”); </ code>
</mapping>

</mappings>� �
Figure 11: A part of Mappings XML file showing
mappings between phrases used in model
to Selenium RC JUnit code

the Selenium RC JUnit java code are identified and included
in the mappings XML file. The domain of the values of
these input variables is also identified from the implementa-
tion and included in the mapping XML file. For example,
from the source code of Hospital Management System, we
found that Name field had a constraint that it should only
accept alpha-numeric values as inputs, while the Age field
had the constraint 0<age≤30. For the Name field which
has constraint as alphanumeric in Mappings XML file, the
ACT tool would generate concrete Selenium RC JUnit test
cases for alphanumeric and nonalphanumeric values as test
inputs. Users can use predicates in the mappings XML file.
For example, for the Age field as {age>0,age≤30}, seperat-
ing conditions by commas. These constraints are included
in the Mappings XML file as shown in figure 11. For the
user input fields which has numeric constraints for example
Age field, the ACT tool while generating concrete Selenium
RC JUnit test cases, uses a numeric constraint solver Choco
[17] to generate a value that satisfies all the constraints and
uses that value as test inputs in the concrete Selenium RC
JUnit test case.

Using the generated abstract test cases and the mappings
XML file, a set of Selenium RC Junit concrete test cases
is generated in this step. The ACT tool uses a numeric
constraint solver Choco to generate test inputs for variables
which have numeric constraints in the mapping XML file.
Figure 12 shows a concrete Selenium RC JUnit test code
generated for the counter example of Figure 7.



7.1 Salient Features
ACT’s mapping step is different from a mechanical phrase
rewriting system in the following ways:

1. One spec, many implementations. An interesting
aspect of using the mapping technique in conjunction
with the symbolic execution step is that, here, we can
modify (or constrain) the specification further based
on refined knowledge about the system. The same ab-
stract test cases can be used to generate multiple test
cases by adding different constraints at the mapping
level. This makes it possible to use the same abstract
specification to generate different sets of concrete test
cases at later stages of development when the insight
about the system gets refined in the form of added
constraints. This approach also enables us to generate
different sets of concrete test cases for different versions
of the implementations from the same set of abstract
test cases (and hence the same abstract specification).
To do so, all we need is to define a separate mapping
for each version of the system.

2. One abstract test case, many concrete test cases.
ACT achieves a several fold increase in the number of
concrete test cases w.r.t. the abstract test cases by
using input space partitioning (ISP) and logic based
coverage techniques. For example:

(a) When <range> is alphanumeric (i.e. alphabetic∨
numeric), ACT generates a test case for all three
(feasible) combinations of the two clauses.

(b) When <range> is low ≤ a < high ((low ≤ a) ∧
(a < high)), ACT generates 5 test cases ((low >
a), (a > high), (low = a), low ≤ a < high,
a = high).

(c) We treat each input field (not already attributed
concrete values at the abstract test generation
stage) as a characteristic, and provide each choice
coverage (ECC) for all fields in a web page.

Graph based techniques used by the front end provide
structural coverage on the specification. The above ap-
proach enhances the coverage by providing systematic
coverage on the input domain.

8. RESULTS
We have implemented all the components of ACT as sepa-
rate programs. As discussed, we use NuSMV model checker
to generate test test paths to give node coverage (other cov-
erage criteria are possible). Our symbolic execution engine
is capable of handling basic integer arithmetic, strings and
quantifier free first order predicate logic. The mapping stage
handles translation of abstract test cases to concrete. Both
these are implemented in Java. We used CVC3 and CHOCO
SMT solvers for helping our symbolic execution and map-
ping steps respectively.

To evaluate our approach, we made the following measure-
ments:

1. ability of ACT to generate abstract test cases corre-
sponding to the test paths generated by the front end

@Test
public void test1 ( )
{

selenium . start ( ) ;
selenium . open ( ”http : // localhost : 8089/ Jkek/”+

”WelcomePage ”) ;
selenium . click ( ”xpath=//a [ contains ( @href ,

’ http : // localhost : 8089/ Jkek/”+
”PatientRegistrationPage ’ ) ] ”) ;

selenium . type (”// input [ @name=’username ’ ] ” , ” Joe ”) ;
selenium . type (”// input [ @name=’password ’ ] ” , ” abc ”) ;
selenium . type (”// input [ @name=’name ’ ] ” , ” a12bc ”) ;
selenium . type (”// input [ @name=’age ’ ] ” , ”1 5 ”) ;
selenium . click (”// input [ @name=’submit ’ ] ”) ;
selenium . type (”// input [ @name=’username ’ ] ” , ” Joe ”) ;
selenium . type (”// input [ @name=’password ’ ] ” , ” abc ”) ;
selenium . click (”// input [ @name=’checkbox1 ’ ] ”) ;
selenium . click (”// input [ @name=’submit ’ ] ”) ;

}

Figure 12: A Selenium RC JUnit concrete test case
for figure 7

2. the expansion in the number of concrete test cases
w.r.t. the abstract test cases

As case studies, two web based enterprise applications, both
developed within our institute, were used. The two web apps
were:

1. Hospital Management System (HMS). This was a class
project containing 133 lines of Java code.

2. Student Information System (SIS). This was a medium
sized project with 15,77 lines of Java code developed
using JSP/Struts.

Both applications use plain HTML without AJAX features.

Our experimental process involved the following steps:

1. We modelled the web applications using the Statechart
notation presented.

2. We derived abstract test cases from Statechart model.

3. Then Selenium Remote Control JUnit concrete tests
were obtained from these abstract test cases.

4. These Selenium RC JUnit concrete test cases were then
executed on the implementation of the Hospital Man-
agement System (HMS) and Student Information Sys-
tem (SIS).

We could make the following observations:

• Simple integer arithmetic, strings and quantifier free
predicate logic was found expressive enough to model
all our guards and actions.

• ACT could translate all paths generated by the front
end into abstract test cases. The test paths which
could not be turned into abstract test cases were sub-
sequently verified to be infeasible.



• There was a significant increase (× 4) in the number
of concrete test cases w.r.t the abstract test cases.

• All concrete test cases generated successfully executed
on Selenium RC.

Table 1 shows the number of nodes in the flattened State-
chart (Nflat), the number of lines of code (LOC) of the web
applications, the number of mappings in the mappings XML
file, the number of abstract test cases generated for various
requirements for various testing criterion, and the number
of concrete Selenium RC JUnit test cases which were gen-
erated. HMS is relatively small with 133 LOC while SIS is
considerably larger with 19 nodes and 15,77 LOC. A total of
14 abstract and 54 concrete test cases were generated for dif-
ferent test criteria for HMS. Similarly, a total of 56 abstract
and 433 test cases were generated for SIS. This behavior is
expected since most of the generated test cases deal with
node and path coverage, which depends on the number of
nodes in the flattened statechart. Furthermore, the number
of lines of code has no direct relation on the number of test
cases generated.

9. CONCLUSION AND FUTURE WORK
Test cases generated from formal specifications are often at
an abstract level. They cannot be executed directly using
a test automation tool, e.g. Selenium. The existing meth-
ods have tried to deal with this problem using a mapping
approach. However, this approach is fundamentally limited
in its capability to translate abstract test cases into con-
crete test case due to the presence of data dependencies be-
tween atomic interactions between the (test-)client and the
server. In this paper, we have provided ACT, a test genera-
tion methodology which uses symbolic execution to resolve
the data dependencies between atomic interactions. Tra-
ditional symbolic execution, done along all control paths, is
known to have scalability issues due to state space explosion.
We perform symbolic execution along selected paths of the
specification, thus avoiding state space explosion. There-
fore, this approach scales to even very large specifications
comprising of 100s or 1000s of states (web-pages). The
resulting abstract test cases are concrete enough so that
the mapping method is effective in completely translating
them to concrete test cases that can be directly executed
on Selenium test runner. Our mapping method, in contrast
to a plain phrase to phrase translation, intelligently super-
imposes other black box test coverage criteria (namely, input
space partitioning and logic based coverage) on the graph
coverage achieved by the previous stages over the State-
chart specification. This results in a meaningful expansion
of the test suite during the translation of abstract test cases
to concrete test cases. The test generation process is split
into three main steps: test path generation, abstract test
case generation and mapping. Each step allows introduc-
tion of additional details into the specification, facilitating
stepwise refinement. This is a very realistic approach as it
does not require the requirement analyst to provide a com-
pletely worked out specification in a single step. As different
mappings can be used for generating concrete test cases from
abstract ones, our method facilitates using the same set of
abstract test cases to generate concrete test cases for dif-
ferent versions of the same application at a later point in
time.

In our future work, we will generalise this approach to apply
other forms of formal specification, coverage criteria, and
front-end techniques. We will also extend this techniques
to deal with more sophisticated features of web apps (e.g.
AJAX).
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